Outline

- 802 protocol overview
- Wireless LANs – 802.11
 » Overview of 802.11
 » 802.11 MAC, frame format, operations
 » 802.11 management
 » 802.11*
 » Deployment example
- Personal Area Networks – 802.15

802.11 MAC Frame Format

- Protocol Version
- Frame Type and Sub-Type
- To DS and From DS
- More Fragments
- Retry
- Power Management
- More Data
- WEP
- Order

Source and destination address: “final” source/dest for the packet
Receiver and transmitter address: nodes wireless nodes that tr/rec packet

Detailed 802.11 MAC Frame Format

<table>
<thead>
<tr>
<th>FC</th>
<th>Duration/ID</th>
<th>Address 1</th>
<th>Address 2</th>
<th>Address 3</th>
<th>Sequence Control</th>
<th>Address 4</th>
<th>DATA</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>0-2312</td>
<td>4</td>
</tr>
</tbody>
</table>

Protocol Version
- IEEE 48 bit address
- Individual/Group
- Universal/Local
- 48 bit address

Frame Type and Sub-Type
- BSSID - BSSID Identifier
- TA - Transmitter
- RA - Receiver
- SA - Source
- DA - Destination

More Fragments
- MSDU
- Fragment Number
- Fragment Number

Retry
- CCITT CRC-32 Polynomial

Power Management
- NAV information
 - Or Shortest for PS-Poll

More Data
- Upper layer data
 - 2048 byte max
 - 256 upper layer header

WEP
- Source and destination address: “final” source/dest for the packet
- Receiver and transmitter address: nodes wireless nodes that tr/rec packet

Order
Packet Types

- Type/sub-type field is used to indicate the type of the frame
- Management:
 - Association/Authentication/Beacon
- Control
 - RTS, CTS, CF-end, ACK
- Data
 - Data only, or Data + CF-ACK, or Data + CF-Poll or Data + CF-Poll + CF-ACK

Addressing Fields

<table>
<thead>
<tr>
<th>To DS</th>
<th>From DS</th>
<th>Message</th>
<th>Address 1</th>
<th>Address 2</th>
<th>Address 3</th>
<th>Address 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>station-to-station frames in an IBSS (adhoc); all mgmt/control frames</td>
<td>DA</td>
<td>SA</td>
<td>BSSID</td>
<td>N/A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>From AP to station</td>
<td>DA</td>
<td>BSSID</td>
<td>SA</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>From station to AP</td>
<td>BSSID</td>
<td>SA</td>
<td>DA</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>From one AP to another in same DS</td>
<td>RA</td>
<td>TA</td>
<td>DA</td>
<td>SA</td>
</tr>
</tbody>
</table>

RA: Receiver Address TA: Transmitter Address
DA: Destination Address SA: Source Address
BSSID: MAC address of AP in an infrastructure BSS

Some More Fields

- Duration/ID: Duration in DCF mode/ID is used in PCF mode
- More Frag: 802.11 supports fragmentation of data
- More Data: In polling mode, station indicates it has more data to send when replying to CF-POLL
- RETRY is 1 if frame is a retransmission; WEP (Wired Equivalent Privacy)
- Power Mgmt is 1 if in Power Save Mode; Order = 1 for strictly ordered service

PLCP: Long Preamble (802.11b)

- PLCP: Physical Layer Convergence Procedure
- Long Preamble = 144 bits
 - Interoperable with older 802.11 devices
 - Entire Preamble and 48 bit PLCP Header sent at 1 Mbps

<table>
<thead>
<tr>
<th>128 bit Preamble (Long)</th>
<th>16 bit Start Frame Delimiter</th>
<th>Signal Speed 1,2,5.5, 11 Mbps</th>
<th>Service (unused)</th>
<th>Length of Payload</th>
<th>16 bit CRC</th>
<th>Payload 34-2346 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted at 1 Mbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitted at X Mbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PLCP: Short Preamble

- Short Preamble = 72 bits
- Preamble transmitted at 1 Mbps
- PLCP Header transmitted at 2 Mbps
- More efficient than long preamble
- Different formats for later (OFDM) standards

Multi-bit Rate

- 802.11 allows for multiple bit rates
 » Allows for adaptation to channel conditions
 » Specific rates dependent on the version
- Algorithm for selecting the rate is not defined by the standard – left to vendors
 » Still a research topic!
 » More later in the semester
- Packets have multi-rate format
 » Different parts of the packet are sent at different rates
 » Why?

Data Flow Examples

- Case 1: Packet from a station under one AP to another in same AP’s coverage area
- Case 2: Packet between stations in an IBSS
- Case 3: Packet from an 802.11 station to a wired server on the Internet
- Case 4: Packet from an Internet server to an 802.11 station

Some Background: Forwarding Logic

- When node needs to send an IP packet:
 » In the same IP network?
 - Check destination IP address
 » Yes: forward based on MAC address
 - Uses ARP protocol to map IP to MAC address
 » No: forward packet to “gateway” router
 - Uses MAC address of the router
Communication in LANs

• Every interface to the network has a IEEE MAC and an IP address associated with it
 » True for both end-points and routers
• IP address inside a LAN share a prefix
 » Prefix = first part of the IP address, e.g., 128.238.36
 » Can be used to determine whether devices are on same LAN
• Traffic outside LAN needs to go through router

Case 1: Communication Inside BSS

- AP knows which stations are registered with it so it knows when it can send frame directly to the destination
- Frame can be set directly to the destination by AP

Case 2: Ad Hoc

- Direct transmit only in IBSS (Independent BSS), i.e., without AP
- Note: in infrastructure mode (i.e., when AP is present), even if B can hear A, A sends the frame to the AP, and AP relays it to B

Case 3: To the Internet

- MAC A determines IP address of the server (using DNS)
- From the IP address, it determines that server is in a different subnet
- Hence it sets MAC R as DA,
 » Address 1: BSSID, Address 2: MAC A, Address 3: DA
- AP will look at the DA address and send it on the ethernet
 » AP is an 802.11 to ethernet bridge
- Router R will relay it to server
Case 4: From Internet to Station

- Packet arrives at router R – uses ARP to resolve destination IP address
 - AP knows nothing about IP addresses, so it will simply broadcast ARP on its wireless link
 - DA = all ones – broadcast address on the ARP
- MAC A host replies with its MAC address (ARP reply)
 - AP passes on reply to router
- Router sends data packet, which the AP simply forwards because it knows that MAC A is registered
- Will AP II broadcast the ARP request on the wireless medium? How about the data packet?

Summary

- Wifi packets have 4 MAC addresses
- Needed to support communication inside a LAN, across access points connected by a wired LAN
- WiFi frames have a multi-rate format, i.e., different parts are sent at different rates
 - The header is sent at a lower rate to improve chances it can be decoded by receivers
 - Contains critical information such as virtual carrier sense, and the bit rate used for the data

Outline

- Brief history
- 802 protocol overview
- Wireless LANs – 802.11 – overview
- 802.11 MAC, frame format, operations
- 802.11 management
- 802.11 security
- 802.11 power control
- 802.11*
- 802.11 QoS

Management and Control Services

- Association management
- Handoff
- Security: authentication and privacy
- Power management
- QoS
802.11: Infrastructure Reminder

- **Station (STA)**
 - terminal with access mechanisms to the wireless medium and radio contact to the access point
- **Access Point**
 - station integrated into the wireless LAN and the distribution system
- **Basic Service Set (BSS)**
 - group of stations using the same AP
- **Portal**
 - bridge to other (wired) networks
- **Distribution System**
 - interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

Service Set Identifier - SSID

- **Mechanism used to segment wireless networks**
 - Multiple independent wireless networks can coexist in the same location
 - Effectively the name of the wireless network
- **Each AP is programmed with a SSID that corresponds to its network**
- **Client computer presents correct SSID to access AP**
- **Security Compromises**
 - AP can be configured to "broadcast" its SSID
 - Broadcasting can be disabled to improve security
 - SSID may be shared among users of the wireless segment

Association Management

- **Stations must associate with an AP before they can use the wireless network**
 - AP must know about them so it can forward packets
 - Often also must authenticate
- **Association is initiated by the wireless host – involves multiple steps:**
 1. Scanning: finding out what access points are available
 2. Selection: deciding what AP (or ESS) to use
 3. Association: protocol to "sign up" with AP – involves exchange of parameters
 4. Authentication: needed to gain access to secure APs – many options possible
- **Disassociation:** station or AP can terminate association

Association Management: Scanning

- **Stations can detect AP using scanning**
- **Passive Scanning:** station simply listens for Beacon and gets info of the BSS
 - Beacons are sent roughly 10 times per second
 - Power is saved
- **Active Scanning:** station transmits Probe Request; elicits Probe Response from AP
 - Saves time + is more thorough
 - Wait for 10-20 msec for response
- **Scanning all available channels can become very time consuming!**
 - Especially with passive scanning
 - Cannot transmit and receive frames during most of that time – not a big problem during initial association
Association Management: Selecting an AP and Joining

- Selecting a BSS or ESS typically must involve the user
 » What networks do you trust? Are you willing to pay?
 » Can be done automatically based on stated user preferences (e.g., the “automatic” list in Windows)
- The wireless host selects the AP it will use in an ESS based on vendor-specific algorithm
 » Uses the information from the scan
 » Typically simply joins the AP with the strongest signal
- Associating with an AP
 » Synchronization in Timestamp Field and frequency
 » Adopt PHY parameters
 » Other parameters: BSSID, WEP, Beacon Period, etc.

Association Management: Roaming

- Reassociation: association is transferred from active AP to a new target AP
 » Supports mobility in the same ESS – layer 2 roaming
- Reassociation is initiated by wireless host based on vendor specific algorithms
 » Implemented using an Association Request Frame that is sent to the new AP
 » New AP accepts or rejects the request using an Association Response Frame
- Coordination between APs is defined in 802.11f
 » Allows forwarding of frames in multi-vendor networks
 » Inter-AP authentication and discovery typically coordinated using a RADIUS server
 » “Fast roaming” support (802.11r) also streamlines authentication and QoS, e.g. for VoIP

Association Management: Reassociation Algorithms

- Failure driven: only try to reassociate after connection to current AP is lost
 » Typically efficient for stationary clients since it not common that the best AP changes during a session
 » Mostly useful for nomadic clients
 » Can be very disruptive for mobile devices
- Proactive reassociation: periodically try to find an AP with a stronger signal
 » Tricky part: cannot communicate while scanning other channels
 » Trick: user power save mode to “hold” messages
 » Throughput during scanning is still affected though
 » Mostly affects latency sensitive applications

(a) — The station finds AP1, it will authenticate and associate.
(b) — As the station moves, it may pre-authenticate with AP2.
(c) — When the association with AP1 is no longer desirable, it may reassociate with AP2.
(d) — AP2 notify AP1 of the new location of the station, terminates the previous association with AP1.
(e) — At some point, AP2 may be taken out of service. AP2 would disassociate the associated stations.
(f) — The station finds another access point and authenticate and associate.
Outline

- Brief history
- 802 protocol overview
- Wireless LANs – 802.11 – overview
- 802.11 MAC, frame format, operations
- 802.11 management
- 802.11 security
- 802.11 power control
- 802.11*
- 802.11 QoS

WLAN Security Requirements

- Authentication: only allow authorized stations to associate with and use the AP
- Confidentiality: hide the contents of traffic from unauthorized parties
- Integrity: make sure traffic contents is not modified while in transit

WLAN Security Exploits

- Insertion attacks: unauthorized Clients or AP
 » Client: reuse MAC or IP address –free service on “secured” APs
 » AP: impersonate an AP, e.g., use well known name
- Interception and unauthorized monitoring
 » Packet Analysis by “sniffing” – listening to all traffic
- Brute Force Attacks Against AP Passwords
 » Dictionary Attacks Against SSID
- Encryption Attacks
 » Exploit known weaknesses of WEP
- Misconfigurations, e.g., use default password
- Jamming – denial of service
 » Cordless phones, baby monitors, leaky microwave oven, etc.

Security in 802.11b

- WEP: Wired Equivalent Privacy
 » Achieve privacy similar to that on LAN through encryption
 » Intended to provide both privacy and integrity
 » RC4 and CRC32
 » Has known vulnerabilities
- WPA: Wi-Fi Protected Access
 » Larger, dynamically changed keys
- 802.1x: port-based authentication for LANs
 » Port-based authentication for LANs
- 802.11i (WPA2)
 » Builds on WPA
 » Uses AES for encryption
MAC Filtering

- Each client is identified by its 802.11 Mac Address
- Each AP can be programmed with the set of MAC addresses it accepts ("white list")
- Combine this filtering with the AP's SSID
- Very simple solution
 » Some overhead to maintain list of MAC addresses
- But it is possible to forge MAC addresses …
 » Unauthorized client can "borrow" the MAC address of an authenticated client
 » Built in firewall will discard unexpected packets

Wired Equivalent Privacy
WEP

- Original standard for WiFi security
- Very weak standard: key could be cracked with a couple of hours of computing (much faster today)
 » Too much information is transmitted in the clear
 » No protocol for encryption key distribution
 » Clever optimizations can reduce time to minutes
- All data then becomes vulnerable to interception
 » WEP typically uses a single shared key for all stations
- The CRC32 check is also vulnerable so that the data could be altered as well
 » Can makes changes without even decrypting!
- Not recommended

Wi-Fi Protected Access
WPA

- Introduced by Wi-Fi Alliance as an interim solution after WEP flaws were published
 » Uses a different Message Integrity Check
 » Encryption still based on RC4, but uses 176 bit key (48bit IV) and keys are changed periodically
 » Also frame counter in MIC to prevent replay attacks.
- Can be used with 802.1x authentication (optional)
 » It generates a long WPA key that is randomly generated, uniquely assigned and frequently changed.
 » Attacks are still possible since people sometimes use short, poorly random WPA keys that can be cracked
- 802.11i is a "permanent" security fix
 » Builds on the interim WPA standard (i.e. WPA2)
 » Replaces RC4 by the more secure Advanced Encryption Standard (AES) block encryption
 » Better key management and data integrity
 » Uses 802.1x for authentication.

Authentication in WLAN Hotspots

- Upon association with the AP, only authentication traffic can pass through, as defined by IEEE 802.1x

 ![Image of authentication process]

- The protocol used to transport authentication traffic is the Extensible Authentication Protocol (EAP - RFC3748)
Dual SSID Approach

VLAN1 : Public
VLAN2 : Management
VLAN3 : User Traffic

Broadcast SSID: mobile
Hidden SSID: mobile-eapsim

User traffic
Authentication traffic
Billing interface

DHCP server
IP pool A 10.0.4.X
IP pool B 10.0.2.Y
IP pool C 10.0.1.X

Subscriber Information System
HLR-proxy
Radius
Home Agent

CDRs (charging data)

Internet