Newer Wi-fi Standards

Chelsea Chen
Samuel Kim

Overview

- 802.11ah
- 802.11af
- 802.11ax
802.11ah

say ‘HaLow’ to the IoT era

802.11ah (HaLow, “HEY-Low”)

- **Operating band**
 - 900 MHz, licensed
- **Primary application**
 - ‘Internet of Things’ devices
- **Advantages**
 - Supports very large number of clients
 - Low power consumption
 - Extended range
802.11ah - two PHY layer bandwidth modes

- Mandatory channel standardizations
 - 1MHz
 - 2MHz
 - Minimum channel bandwidth for all countries
- Optional channel bandwidths
 - 4MHz, 8MHz, 16MHz

802.11ah - PHY layer 1MHz mode

- OFDM - 24 subcarriers
- Introduced a new Modulation and Coding Scheme Index (MCS Index): MCS-10
 - Same as MCS-0 except 2x data repetition for higher resiliency in data transmission
802.11ah - PHY layer 2MHz mode

- Design based on IEEE 802.11ac’s PHY layer but with enhanced long range transmission resiliency
 - Supports Downlink Multi-user MIMO
 - 10 times down-clocking - 1/10th data rate compared to 802.11ac
 - Ie. 10 times longer symbol time - each symbol has 10x increased chance of getting received
- Supports bandwidths of 2MHz and more - 2MHz, 4MHz, 8MHz, and 16MHz
 - In 802.11ac, these are 20MHz, 40MHz, 80MHz, 160MHz
- OFDM - 52 subcarriers

802.11ah - MAC

- Supports a large number of stations - scalability
 - Uses Hierarchical Association ID (AID) structure
 - AID: an ID that the access point associates each station with
 - 4 hierarchical levels
 - $2^{13} - 1 = 8191$ stations
 - Other standards: only 2007 stations
- Lowers energy consumption
 - Sets a wake-up interval and only communicates when woken up
 - “Bursty packets”
- Improves throughput
 - Shortens MAC headers
 - Eliminates channel access delay, ACK transmission delay
802.11ah Evaluation result

- 802.11ah(900MHz) vs 802.11n(2.4GHz) vs 802.11ac(5GHz)
- Evaluated based on path-loss
- Indoor and outdoor evaluations: 802.11ah has longer transmission range

802.11af

‘Super Wi-Fi’ saves the day in rural areas
802.11af (White-Fi or Super Wi-Fi)

- **Primary application**
 - Long-Range wireless to rural areas
- **Operating band**
 - 54 - 790 MHz
- **PHY layer**
 - Based on 802.11ac's PHY layer
- **Advantages**
 - Utilizes unused spectrum left by broadcast television channels

802.11af - Efficient Spectrum Utilization

- TV white space spectrum advantages over higher band spectrums
 - Less path loss in Non Line Of Sight propagation
 - Lower capacity over longer range, as opposed to higher capacity over shorter range
 - Underutilization -> have to deal with less interference
802.11af - Challenges

- Interferes with TV transmissions. Solutions:
 - Cognitive radio
 - Senses frequencies in the surroundings
 - Avoid busy channels
 - Could still suffer from hidden terminal problem
 - Geographic sensing
 - Uses a geolocation database (GDB) to check channel availabilities
 - Has to immediately stop transmission if GDB tells it to
 - Updates and queries to GDB might not be timely enough

802.11ax

802.11a/b/g/n/ac… and now ax
802.11ax (Wi-Fi 6)

- Successor to 802.11ac
- Operating on 2.4 GHz and 5 GHz
- Primary need: Dense environments
 - e.g. stadiums, airports, outdoor hotspots
- Main advantages
 - Focus on user experience:
 - Nominal increase to max data rate compared to 11ac
 - But higher user throughput with efficient spectrum utilization
 - 4-10x more capacity than 11ac
 - Massive parallelism
 - Power saving technologies

802.11ax - OFDMA (Orthogonal Frequency Division Multiple Access)

- Spread multiple users across different subcarriers (frequency diversity)
- Problem: High MAC contention
 - 11n combines short packets in time
 - 11ac combines different users spatially
 - OFDMA combines different users in frequency
- 11ac introduced wide bands (80/160 MHz from 20/40 MHz) to increase speed
 - Problem: Susceptible to frequency selective interference
 - Solution: OFDMA can now choose a subcarrier based on best frequency
- Additionally, longer symbols than 11ac
802.11ax - Uplink MU-MIMO

- Problem: Multi-user collision in UL direction
- Uplink MU-MIMO uses a ‘Trigger’ frame
 - 1. AP has to discover which users are ready to transmit
 - 2. AP must calculate best allocation of MU-MIMO groups and OFDMA subcarriers
 - 3. AP then sends necessary information (e.g. RU allocation, modulation scheme) to users for transmission
- Some issues
 - UL requires grouped users to have similar conditions
 - Backward compatibility

802.11ax - Increased QAM

- 11ax adds 1024-QAM
- Spectral efficiency increased by 25%
- Requires high SNR
802.11ax - Challenge: Power consumption

- **BSS Coloring**
 - Motivation: Overlapping BSS in dense environments
 - Station can set different ‘defer’ thresholds for different BSS ‘colors’
 - i.e. don’t care about transmissions from BSS far from mine

- **Target Wake Time**
 - Introduced in 802.11ah
 - 11ax introduces a Broadcast TWT mode that groups devices together

- **And more…**
 - Extends life of IoT sensors and other clients
 - 20 MHz-only mode, Receive/Transmit operating mode, optimize client settings

Summary of 802.11ah/af/ax

<table>
<thead>
<tr>
<th></th>
<th>Technical Features</th>
<th>Use Cases</th>
<th>Major Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11ah</td>
<td>900MHz bands</td>
<td>IoT devices</td>
<td>Power efficiency</td>
</tr>
<tr>
<td></td>
<td>Transmission interval</td>
<td></td>
<td>Large number of stations</td>
</tr>
<tr>
<td></td>
<td>Hierarchical AID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11af</td>
<td>TV whitespace (54 - 790 MHz bands)</td>
<td>Rural area wifi access</td>
<td>Long transmission range</td>
</tr>
<tr>
<td></td>
<td>Cognitive radio technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11ax</td>
<td>2.4 GHz and 5 GHz bands</td>
<td>Dense environments</td>
<td>Massive parallelism</td>
</tr>
<tr>
<td></td>
<td>OFDMA</td>
<td>Overlapping APs</td>
<td>Higher throughput in</td>
</tr>
<tr>
<td></td>
<td>DL/UL MU-MIMO</td>
<td>Outdoor range</td>
<td>dense env.</td>
</tr>
<tr>
<td></td>
<td>1024 QAM</td>
<td></td>
<td>Power efficiency</td>
</tr>
</tbody>
</table>
Thank you - Any questions?

- Additional resources
 - 802.11ah
 - https://pdfs.semanticscholar.org/dbe4/3f9e28e125203439c8b554f19f0b6ce79443.pdf
 - 802.11af
 - 802.11ax
 - IEEE Research Paper on 802.11ax
 - 802.11ax White Paper from Aruba
 - See current IEEE 802.11ax progress/reports!
 - TGax - UL MIMO (May 2014)
 - TGax - Longer symbol times (Jan 2015)