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15-744 Computer Networking

Review 2 – Transport Protocols

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer

• TCP reliability

• Congestion sources and collapse

• Congestion control basics
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Transport Protocols

• Lowest level end-to-
end protocol.
• Header generated by 

sender is interpreted 
only by the destination

• Routers view transport 
header as part of the 
payload

• Not always true…
• Firewalls
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Functionality Split

• Network provides best-effort delivery
• End-systems implement many functions

• Reliability
• In-order delivery
• Demultiplexing
• Message boundaries
• Connection abstraction
• Congestion control
• …
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Transport Protocols

• UDP provides just integrity and demux
• TCP adds…

• Connection-oriented
• Reliable
• Ordered
• Byte-stream
• Full duplex
• Flow and congestion controlled

• DCCP, RTP, SCTP -- not widely used.
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UDP: User Datagram Protocol [RFC 768]

• “No frills,” “bare bones” 
Internet transport 
protocol

• “Best effort” service, 
UDP segments may be:
• Lost
• Delivered out of order to 

app

• Connectionless:
• No handshaking between 

UDP sender, receiver
• Each UDP segment 

handled independently of 
others

Why is there a UDP?
• No connection establishment 

(which can add delay)
• Simple: no connection state 

at sender, receiver
• Small header
• No congestion control: UDP 

can blast away as fast as 
desired
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UDP, cont.

• Often used for 
streaming 
multimedia apps
• Loss tolerant
• Rate sensitive

• Other UDP uses 
(why?):
• DNS

• Reliable transfer 
over UDP
• Must be at 

application layer
• Application-specific 

error recovery

Source port # Dest port #

32 bits

Application
data 

(message)

UDP segment format

Length Checksum
Length, in

bytes of UDP
segment,
including
header
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UDP Checksum

Sender:
• Treat segment contents as 

sequence of 16-bit integers
• Checksum: addition (1’s 

complement sum) of segment 
contents

• Sender puts checksum value 
into UDP checksum field

Receiver:
• Compute checksum of 

received segment
• Check if computed checksum 

equals checksum field value:
• NO - error detected
• YES - no error detected

But maybe errors 
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment – optional use!
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High-Level TCP Characteristics

• Protocol implemented entirely at the ends
• Fate sharing (on IP)

• Protocol has evolved over time and will continue 
to do so

• Nearly impossible to change the header
• Use options to add information to the header
• Change processing at endpoints
• Backward compatibility is what makes it TCP 
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TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

11

Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion 

collapse

1987
Karn’s algorithm
to better estimate 

round-trip time

1986
Congestion 

collapse
observed

1988
Van Jacobson’s 

algorithms
congestion avoidance 
and congestion control
(most implemented in 

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75
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TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit 

Congestion
Notification

1993
TCP Vegas 

(Brakmo et al)
delay-based 

congestion avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective 
Acknowledgement

1996
Hoe

NewReno startup 
and loss recovery

1996
FACK TCP

(Mathis et al)
extension to SACK
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Stop and Wait

• ARQ
• Receiver sends 

acknowledgement (ACK) 
when it receives packet

• Sender waits for ACK and 
timeouts if it does not 
arrive within some time 
period

• Simplest ARQ protocol
• Send a packet, stop and 

wait until ACK arrives
• Performance

• Can only send one 
packet per round trip
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Recovering from Error
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ACK lost Packet lost Early timeout
DUPLICATE
PACKETS!!!
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How to Recognize Resends?

• Use sequence numbers
• both packets and acks

• Sequence # in packet is finite 
 How big should it be? 
• For stop and wait?

• One bit – won’t send seq #1 
until received ACK for seq #0
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How to Keep the Pipe Full?

• Send multiple packets without 
waiting for first to be acked
• Number of pkts in flight = window:  

Flow control
• Reliable, unordered delivery

• Several parallel stop & waits
• Send new packet after each ack
• Sender keeps list of unack’ed packets; 

resends after timeout
• Receiver same as stop & wait

• How large a window is needed?
• Suppose 10Mbps link, 4ms delay, 

500byte pkts
• 1? 10? 20?

• Round trip delay * bandwidth = 
capacity of pipe 18

Sliding Window

• Reliable, ordered delivery
• Receiver has to hold onto a packet until all prior 

packets have arrived
• Why might this be difficult for just parallel stop & wait?
• Sender must prevent buffer overflow at receiver

• Circular buffer at sender and receiver
• Packets in transit  buffer size 
• Advance when sender and receiver agree packets at 

beginning have been received
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ReceiverSender

Sender/Receiver State

… …

Sent & Acked Sent Not Acked

OK to Send Not Usable

… …

Max acceptable

Receiver window 

Max ACK received Next seqnum

Received & Acked Acceptable Packet

Not Usable

Sender window

Next expected
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Sequence Numbers

• How large do sequence numbers need to be?
• Must be able to detect wrap-around
• Depends on sender/receiver window size

• E.g.
• Max seq = 7, send win=recv win=7
• If pkts 0..6 are sent succesfully and all acks lost

• Receiver expects 7,0..5, sender retransmits old 0..6!!!

• Max sequence must be  send window + recv window
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Window Sliding – Common Case

• On reception of new ACK (i.e. ACK for something that was 
not acked earlier)
• Increase sequence of max ACK received
• Send next packet

• On reception of new in-order data packet (next expected)
• Hand packet to application
• Send cumulative ACK – acknowledges reception of all packets up 

to sequence number
• Increase sequence of max acceptable packet
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Loss Recovery

• On reception of out-of-order packet
• Send nothing (wait for source to timeout)
• Cumulative ACK (helps source identify loss)

• Timeout (Go-Back-N recovery)
• Set timer upon transmission of packet
• Retransmit all unacknowledged packets

• Performance during loss recovery
• No longer have an entire window in transit
• Can have much more clever loss recovery

23

Important Lessons

• Transport service
• UDP  mostly just IP service
• TCP  congestion controlled, reliable, byte stream

• Types of ARQ protocols
• Stop-and-wait  slow, simple
• Go-back-n  can keep link utilized (except w/ losses)
• Selective repeat  efficient loss recovery -- used in 

SACK
• Sliding window flow control

• Addresses buffering issues and keeps link utilized
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Good Ideas So Far…

• Flow control
• Stop & wait
• Parallel stop & wait
• Sliding window

• Loss recovery
• Timeouts
• Acknowledgement-driven recovery (selective repeat or 

cumulative acknowledgement)
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More on Sequence Numbers

• 32 Bits, Unsigned  for bytes not packets!

• Why So Big?
• For sliding window, must have 
• |Sequence Space| > |Sending Window| + |Receiving 

Window|
• No problem

• Also, want to guard against stray packets 
• With IP, packets have maximum lifetime of 120s
• Sequence number would wrap around in this time at 286Mbps
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TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes without 

receiving an acknowledgement 
• When the data is acknowledged then the window 

slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has space for
• Original TCP always sent entire window

• Congestion control now limits this
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Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked



8

29

acknowledged sent to be sent outside window

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
D. Checksum Urgent Pointer

Options…

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
D. Checksum Urgent Pointer

Options...

Packet Sent Packet Received

App write

Window Flow Control: Send Side
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Performance Considerations

• The window size can be controlled by receiving 
application

• Can change the socket buffer size from a default (e.g. 
8Kbytes) to a maximum value (e.g. 64 Kbytes)

• The window size field in the TCP header limits the 
window that the receiver can advertise

• 16 bits  64 KBytes
• 10 msec RTT  51 Mbit/second
• 100 msec RTT  5 Mbit/second
• TCP options to get around 64KB limit  scales window 

size
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Establishing Connection:
Three-Way handshake

• Each side notifies other of 
starting sequence number it 
will use for sending
• Why not simply chose 0?

• Must avoid overlap with earlier 
incarnation

• Security issues

• Each side acknowledges 
other’s sequence number
• SYN-ACK: Acknowledge 

sequence number + 1
• Can combine second SYN 

with first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer
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Reliability Challenges

• Congestion related losses
• Variable packet delays

• What should the timeout be?
• Reordering of packets

• How to tell the difference between a delayed packet 
and a lost one?

TCP = Go-Back-N Variant

• Sliding window with cumulative acks
• Receiver can only return a single “ack” sequence number to 

the sender.
• Acknowledges all bytes with a lower sequence number
• Starting point for retransmission
• Duplicate acks sent when out-of-order packet received 

• But: sender only retransmits a single packet.
• Reason???

• Only one that it knows is lost
• Network is congested  shouldn’t overload it

• Error control is based on byte sequences, not 
packets.
• Retransmitted packet can be different from the original lost 

packet – Why?
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Round-trip Time Estimation

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:

• Low  RTT estimate
• unneeded retransmissions

• High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – never more than a 

window worth of packets in flight
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Original TCP Round-trip Estimator

• Round trip times 
exponentially averaged:
• New RTT =  (old RTT) + 

(1 - ) (new sample)
• Recommended value for 

: 0.8 - 0.9
• 0.875 for most TCP’s

0

0.5

1

1.5

2

2.5

• Retransmit timer set to (b * RTT), where b = 2
• Every time timer expires, RTO exponentially backed-off

• Not good at preventing premature timeouts
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RTT Sample Ambiguity

• Karn’s RTT Estimator
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this segment
• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful transmission

A B

Sample
RTT

RTO

A B

Sample
RTT

RTO
X

38

Jacobson’s Retransmission Timeout

• Key observation:
• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation

• RTO = RTT + 4 * rttvar
• new_rttvar =  * dev + (1- ) old_rttvar

• Dev = linear deviation 
• Inappropriately named – actually smoothed linear 

deviation
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Timestamp Extension

• Used to improve timeout mechanism by more 
accurate measurement of RTT

• When sending a packet, insert current time into 
option
• 4 bytes for time, 4 bytes for echo a received timestamp

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet
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Timer Granularity

• Many TCP implementations set RTO in multiples 
of 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary quickly due to 

cross traffic
• Reduce timer expensive timer interrupts on hosts

• What happens for the first couple of packets?
• Pick a very conservative value (seconds)



11

41

Fast Retransmit -- Avoiding Timeouts

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequence

• When can duplicate acks occur?
• Loss
• Packet re-ordering
• Window update – advertisement of new flow control window

• Assume re-ordering is infrequent and not of large 
magnitude
• Use receipt of 3 or more duplicate acks as indication of loss
• Don’t wait for timeout to retransmit packet
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Fast Retransmit

Time

Sequence No Duplicate Acks

RetransmissionX

Packets

Acks
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TCP (Reno variant)

Time

Sequence No
X

X

XX

Now what? - timeout

Packets

Acks
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SACK

• Basic problem is that cumulative acks provide little 
information

• Selective acknowledgement (SACK) essentially 
adds a bitmask of packets received 
• Implemented as a TCP option
• Encoded as a set of received byte ranges (max of 4 

ranges/often max of 3)
• When to retransmit?

• Still need to deal with reordering  wait for out of order 
by 3pkts
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SACK 

Time

Sequence No
X

X

XX

Now what? – send
retransmissions as soon
as detected

Packets

Acks
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Performance Issues

• Timeout >> fast rexmit

• Need 3 dupacks/sacks

• Not great for small transfers
• Don’t have 3 packets outstanding

• What are real loss patterns like?
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Important Lessons

• Three-way TCP Handshake
• TCP timeout calculation  how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?
• How to avoid them?  e.g. fast retransmit

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer

• TCP reliability

• Congestion sources and collapse

• Congestion control basics
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Congestion

• Different sources compete for resources 
inside network

• Why is it a problem?
• Sources are unaware of current state of resource
• Sources are unaware of each other
• In many situations will result in < 1.5 Mbps of 

throughput (congestion collapse)

10 Mbps

100 Mbps

1.5 Mbps
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Causes & Costs of Congestion

• Four senders – multihop paths
• Timeout/retransmit

Q: What happens as rate     
increases?
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Causes & Costs of Congestion

• When packet dropped, any “upstream 
transmission capacity used for that packet 
was wasted!

Congestion Collapse

• Definition: Increase in network load results in 
decrease of useful work done

• Many possible causes
• Spurious retransmissions of packets still in flight

• Classical congestion collapse
• How can this happen with packet conservation
• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in 

network
• Solution: congestion control for ALL traffic

• Etc..
52
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Other Congestion Collapse Causes

• Fragments
• Mismatch of transmission and retransmission units
• Solutions

• Make network drop all fragments of a packet (early packet 
discard in ATM)

• Do path MTU discovery

• Control traffic
• Large percentage of traffic is for control

• Headers, routing messages, DNS, etc.

• Stale or unwanted packets
• Packets that are delayed on long queues
• “Push” data that is never used
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Where to Prevent Collapse?

• Can end hosts prevent problem?
• Yes, but must trust end hosts to do right thing
• E.g., sending host must adjust amount of data it puts in 

the network based on detected congestion
• Can routers prevent collapse?

• No, not all forms of collapse
• Doesn’t mean they can’t help 

• Sending accurate congestion signals
• Isolating well-behaved from ill-behaved sources
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Congestion Control and Avoidance

• A mechanism which:
• Uses network resources efficiently
• Preserves fair network resource allocation
• Prevents or avoids collapse

• Congestion collapse is not just a theory
• Has been frequently observed in many networks

Approaches For Congestion Control

End-to-end

• No explicit feedback from 
network

• Congestion inferred from 
end-sys     tem observed 
loss, delay

• Approach taken by TCP

Network-assisted

• Routers provide feedback 
to end systems
• Explicit rate sender should 

send at
• Single bit indicating 

congestion (SNA, DEC bit, 
TCP/IP ECN, ATM)

• Problem: makes routers 
complicated
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• Two broad approaches towards congestion control:
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Example: TCP Congestion Control

• Very simple mechanisms in network
• FIFO scheduling with shared buffer pool
• Feedback through packet drops

• TCP interprets packet drops as signs of congestion and 
slows down

• This is an assumption: packet drops are not a sign of congestion in 
all networks

• E.g. wireless networks

• Periodically probes the network to check whether more 
bandwidth has become available.

Outline

• Transport introduction
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• TCP flow control/connection setup/data transfer
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• Congestion control basics
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Objectives

• Simple router behavior 
• Distributedness
• Efficiency: Xknee = xi(t)
• Fairness: (xi)2/n(xi

2)
• Power: (throughput/delay)
• Convergence: control system must be stable
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Basic Control Model

• Let’s assume window-based control
• Reduce window when congestion is perceived

• How is congestion signaled?
• Either mark or drop packets

• When is a router congested?
• Drop tail queues – when queue is full
• Average queue length – at some threshold

• Increase window otherwise
• Probe for available bandwidth – how?
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Linear Control

• Many different possibilities for reaction to 
congestion and probing
• Examine simple linear controls
• Window(t + 1) = a + b Window(t)
• Different ai/bi for increase and ad/bd for decrease

• Supports various reaction to signals
• Increase/decrease additively
• Increased/decrease multiplicatively
• Which of the four combinations is optimal?
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Phase plots

• Simple way to visualize behavior of competing 
connections over time

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Phase plots

• What are desirable properties?
• What if flows are not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
Optimal point

Overload

Underutilization

Additive Increase/Decrease

• Both X1 and X2 increase/decrease by the same amount 
over time
• Additive increase improves fairness and additive decrease reduces 

fairness
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T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Multiplicative Increase/Decrease

• Both X1 and X2 increase by the same factor over time
• Extension from origin – constant fairness
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T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

66

Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Distributed Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

a=0
b=1
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Convergence to Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

xH’
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Convergence to Efficiency & Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

xH’
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Increase

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

xL
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Constraints

• Distributed efficiency
• I.e.,  Window(t+1) >  Window(t) during increase

• ai > 0 & bi ≥ 1
• Similarly, ad < 0 & bd ≤ 1

• Must never decrease fairness
• a & b’s must be ≥ 0
• ai/bi > 0 and ad/bd ≥ 0

• Full constraints
• ad = 0,  0 ≤ bd < 1, ai > 0 and bi ≥ 1

What is the Right Choice?

• Constraints limit us to AIMD
• Can have multiplicative term in increase (MAIMD)
• AIMD moves towards optimal point
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x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Questions

• Fairness – why not support skew  AIMD/GAIMD 
analysis

• More bits of feedback  DECbit, XCP, Vegas
• Guess # of users  hard in async system, look at 

loss rate?
• Stateless vs. stateful design
• Wired vs. wireless
• Non-linear controls  Bionomial

73 74

TCP Congestion Control 

• Congestion Control
• RED

• Assigned Reading
• [FJ93] Random Early Detection Gateways for 

Congestion Avoidance
• [TFRC] Equation-Based Congestion Control for Unicast 

Applications (two sections)


