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Review 2 — Transport Protocols
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e Transport introduction

e Error recovery & flow control

» TCP flow control/connection setup/data transfer

e TCP reliability

« Congestion sources and collapse

« Congestion control basics

Transport Protocols

L\

¢ Lowest level end-to-
end protocol.
* Header generated by

sender is interpreted
only by the destination

* Routers view transport
header as part of the
payload

¢ Not always true...

« Firewalls
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Functionality Split

"N

» Network provides best-effort delivery
» End-systems implement many functions

¢ Reliability

* In-order delivery

e Demultiplexing

¢ Message boundaries
» Connection abstraction
e Congestion control




Transport Protocols

«

» UDP provides just integrity and demux
* TCP adds...

Connection-oriented

Reliable

Ordered

Byte-stream

Full duplex

Flow and congestion controlled

e DCCP, RTP, SCTP -- not widely used.

UDP: User Datagram Protocol [RFC 768] i‘,

* “No frills,” “bare bones”
Internet transport
protocol

» “Best effort” service,
UDP segments may be:
¢ Lost
« Delivered out of order to
app
» Connectionless:

* No handshaking between
UDP sender, receiver

* Each UDP segment
handled independently of
others

Why is there a UDP?

* No connection establishment
(which can add delay)

» Simple: no connection state
at sender, receiver

* Small header

* No congestion control: UDP
can blast away as fast as
desired

UDP, cont.

L\

e Often used for

streaming
multimedia apps  Lengih, in | Source port# | Dest port #
¢ Loss tolerant bytes of UDP [~Length Checksum
* Rate sensitive

e Other UDP uses header
(why?):

32 bits

segment,
including

« DNS Application

¢ Reliable transfer
over UDP

* Must be at
application layer

data
(message)

« Application-specific

error recovery

UDP segment format

UDP Checksum

"N

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment — optional use!

Sender:

» Treat segment contents as
sequence of 16-bit integers

* Checksum: addition (1's

complement sum) of segment

contents

¢ Sender puts checksum value
into UDP checksum field

Receiver:
* Compute checksum of
received segment

¢ Check if computed checksum
equals checksum field value:

* NO - error detected
e YES - no error detected

But maybe errors
nonetheless?




High-Level TCP Characteristics “, TCP Header i‘,

* Protocol implemented entirely at the ends

 Fate sharing (on IP) Source port ‘ Destination port
« Protocol has evolved over time and will continue Flags: SYN Sequence number
d 9s: Acknowledgement
to do so FIN
« Nearly impossible to change the header EEgET Hd”-e”‘ 0 ‘ Flags | Advertised window
* Use options to add information to the header URG Checksum Urgent pointer
» Change processing at endpoints ACK Options (variable)
» Backward compatibility is what makes it TCP

Data
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Outline “,

Stop and Wait

e Transport introduction

» Error recovery & flow control

» TCP flow control/connection setup/data transfer
» TCP reliability

» Congestion sources and collapse

» Congestion control basics
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Recovering from Error “
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« ARQ
* Receiver sends
acknowledgement (ACK)
when it receives packet d )
« Sender waits for ACK and Sender  Receiver
timeouts if it does not
S(rarri;gedwithin some time 5 %’
. D
« Simplest ARQ protocol E ACK
» Send a packet, stop and |
wait until ACK arrives
 Performance Time
» Can only send one
packet per round trip
14
How to Recognize Resends? n
* Use sequence numbers
¢ both packets and acks %
* Sequence # in packet is finite o
- How big should it be? Ko
 For stop and wait? Pkt o
+ One bit —won’'t send seq #1 oK
until received ACK for seq #0 L

16




How to Keep the Pipe Full? “,

» Send multiple packets without
waiting for first to be acked
* Number of pkts in flight = window:
Flow control
* Reliable, unordered delivery
» Several parallel stop & waits
» Send new packet after each ack

e Sender keeps list of unack’ed packets;
resends after timeout

¢ Receiver same as stop & wait
* How large a window is needed?

N/

e Suppose 10Mbps link, 4ms delay,

500byte pkts
« 17107 20?
* Round trip delay * bandwidth =
capacity of pipe 17

Sliding Window O\ Y

« Reliable, ordered delivery
* Receiver has to hold onto a packet until all prior
packets have arrived
* Why might this be difficult for just parallel stop & wait?
e Sender must prevent buffer overflow at receiver
 Circular buffer at sender and receiver
¢ Packets in transit < buffer size

e Advance when sender and receiver agree packets at
beginning have been received

Sender/Receiver State “

Sender Receiver

Max ACK received  Next seqnum Next expected Max acceptable

I Sent & Acked |:| Sent Not Acked I Received & Acked D Acceptable Packet

I OK to Send D Not Usable DNOI Usable

& 1L TUT T el g
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Sequence Numbers n

« How large do sequence numbers need to be?
¢ Must be able to detect wrap-around
¢ Depends on sender/receiver window size
- E.Q.
* Max seq = 7, send win=recv win=7
 If pkts 0..6 are sent succesfully and all acks lost
« Receiver expects 7,0..5, sender retransmits old 0..6!!!

e Max sequence must be > send window + recv window

20




Window Sliding — Common Case “,

e On reception of new ACK (i.e. ACK for something that was
not acked earlier)
* Increase sequence of max ACK received
* Send next packet
e On reception of new in-order data packet (next expected)
¢ Hand packet to application
« Send cumulative ACK — acknowledges reception of all packets up
to sequence number
* Increase sequence of max acceptable packet

21

Loss Recovery i‘

* On reception of out-of-order packet

« Send nothing (wait for source to timeout)

e Cumulative ACK (helps source identify loss)
e Timeout (Go-Back-N recovery)

e Set timer upon transmission of packet

e Retransmit all unacknowledged packets
e Performance during loss recovery

* No longer have an entire window in transit

e Can have much more clever loss recovery

22

Important Lessons “

» Transport service
e UDP > mostly just IP service
e TCP - congestion controlled, reliable, byte stream
* Types of ARQ protocols
 Stop-and-wait - slow, simple
e Go-back-n = can keep link utilized (except w/ losses)
» Selective repeat > efficient loss recovery -- used in
SACK
« Sliding window flow control
» Addresses buffering issues and keeps link utilized

23

Good Ideas So Far... n

¢ Flow control

« Sliding window
* Loss recovery

* Timeouts

« Acknowledgement-driven recovery (selective repeat or
cumulative acknowledgement)

24




Outline “,

» Transport introduction

» Error recovery & flow control

e TCP flow control/connection setup/data transfer
» TCP reliability

» Congestion sources and collapse

» Congestion control basics
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More on Sequence Numbers i‘,

» 32 Bits, Unsigned - for bytes not packets!

* Why So Big?
* For sliding window, must have
e |Sequence Space| > |Sending Window| + |Receiving
Window|

¢ No problem

¢ Also, want to guard against stray packets
* With IP, packets have maximum lifetime of 120s
* Sequence number would wrap around in this time at 286Mbps

26

TCP Flow Control “

e TCP is a sliding window protocol

« For window size n, can send up to n bytes without
receiving an acknowledgement

« When the data is acknowledged then the window
slides forward

e Each packet advertises a window size

¢ Indicates number of bytes the receiver has space for
e Original TCP always sent entire window

» Congestion control now limits this

27

Window Flow Control: Send Side i‘

window

Sent and acked | Sent but not acked

T

Next to be sent

28




Window Flow Control: Send Side “,

Packet Sent Packet Received
Acknowledgment

HL/Flags m HL/Flags_—
D_ Checksum_| Urgent pinter | gsum | Urgent Pointer

App write
| | | |

acknowledged sent  to be sent outside window
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Performance Considerations i‘,

» The window size can be controlled by receiving
application
» Can change the socket buffer size from a default (e.g.
8Kbytes) to a maximum value (e.g. 64 Kbytes)
e The window size field in the TCP header limits the
window that the receiver can advertise
* 16 bits > 64 KBytes
* 10 msec RTT - 51 Mbit/second
¢ 100 msec RTT - 5 Mbit/second

» TCP options to get around 64KB limit > scales window
size
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Establishing Connection: “

Three-Way handshake

» Each side notifies other of
starting sequence number it SYN: SeqC
will use for sending

* Why not simply chose 0?

» Must avoid overlap with earlier ACK: SeqC+1
incarnation SYN: SeqS
e Security issues
e Each side acknowledges ACK: SeqS+

other’s sequence number
¢ SYN-ACK: Acknowledge
sequence number + 1
e Can combine second SYN
with first ACK

Client Server

31

Outline n

e Transport introduction
 Error recovery & flow control

TCP flow control/connection setup/data transfer

TCP reliability
« Congestion sources and collapse

e Congestion control basics
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Reliability Challenges O\ Y

e Congestion related losses
» Variable packet delays

e What should the timeout be?
* Reordering of packets

* How to tell the difference between a delayed packet
and a lost one?

33

TCP = Go-Back-N Variant i‘,

« Sliding window with cumulative acks
¢ Receiver can only return a single “ack” sequence number to
the sender.
* Acknowledges all bytes with a lower sequence number
 Starting point for retransmission
« Duplicate acks sent when out-of-order packet received
« But: sender only retransmits a single packet.
* Reason???
* Only one that it knows is lost
* Network is congested - shouldn’t overload it
e Error control is based on byte sequences, not
packets.

» Retransmitted packet can be different from the original lost
packet — Why?

Round-trip Time Estimation “

* Wait at least one RTT before retransmitting

» Importance of accurate RTT estimators:

e Low RTT estimate
¢ unneeded retransmissions

e High RTT estimate
e poor throughput
RTT estimator must adapt to change in RTT
 But not too fast, or too slow!
* Spurious timeouts

» “Conservation of packets” principle — never more than a
window worth of packets in flight

35

Original TCP Round-trip Estimator n

* Round trip times 2
exponentially averaged: -

¢ New RTT =« (old RTT) +
(1 - o) (new sample) 15
* Recommended value for
a:0.8-0.9 (

« 0.875 for most TCP's 05

¢ Retransmit timer setto (b * RTT), where b = 2
« Every time timer expires, RTO exponentially backed-off

¢ Not good at preventing premature timeouts




RTT Sample Ambiguity i‘.

A B A B
O

RTO

Original transmission

IRTO

Sample retrans, . Sample
RTT ansrnlssion RTT P I
pck

e Karn's RTT Estimator

 If a segment has been retransmitted:
» Don't count RTT sample on ACKs for this segment
» Keep backed off time-out for next packet
* Reuse RTT estimate only after one successful transmission
37

Jacobson’s Retransmission Timeout i‘

* Key observation:
At high loads round trip variance is high
* Solution:

» Base RTO on RTT and standard deviation
e RTO = RTT + 4 * rttvar

* new_rttvar = * dev + (1- B) old_rttvar
* Dev = linear deviation

« Inappropriately named — actually smoothed linear
deviation
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Timestamp Extension “

» Used to improve timeout mechanism by more
accurate measurement of RTT
* When sending a packet, insert current time into
option
« 4 bytes for time, 4 bytes for echo a received timestamp
» Receiver echoes timestamp in ACK
 Actually will echo whatever is in timestamp
» Removes retransmission ambiguity
e Can get RTT sample on any packet
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Timer Granularity “

e Many TCP implementations set RTO in multiples
of 200,500,1000ms
e Why?
¢ Avoid spurious timeouts — RTTs can vary quickly due to
cross traffic

* Reduce timer expensive timer interrupts on hosts

* What happens for the first couple of packets?
¢ Pick a very conservative value (seconds)

40
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Fast Retransmit -- Avoiding Timeouts “,

* What are duplicate acks (dupacks)?
» Repeated acks for the same sequence
* When can duplicate acks occur?
e Loss
» Packet re-ordering
« Window update — advertisement of new flow control window
» Assume re-ordering is infrequent and not of large
magnitude
» Use receipt of 3 or more duplicate acks as indication of loss
« Don't wait for timeout to retransmit packet

41

Fast Retransmit i‘,

. Retransmission

Sequence No % «— puplicate Acks
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Time
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TCP (Reno variant) “
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SACK i‘

» Basic problem is that cumulative acks provide little
information

» Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
* Implemented as a TCP option

* Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)

¢ When to retransmit?

« Still need to deal with reordering = wait for out of order
by 3pkts

44
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SACK

«

Sequence No

commmm

Ml Packets
@Acks

coocomEEEEEEX

EEXE R

oco0o0o0o000

Now what? — send
retransmissions as soon

as detected

Time
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Performance Issues i‘,

* Timeout >> fast rexmit

Need 3 dupacks/sacks

Not great for small transfers
« Don'’t have 3 packets outstanding

What are real loss patterns like?

46

Important Lessons

L\

» Three-way TCP Handshake

e TCP timeout calculation = how is RTT estimated

* Modern TCP loss recovery

e Why are timeouts bad?
* How to avoid them? - e.g. fast retransmit

47

Outline i‘

e Transport introduction

 Error recovery & flow control

e TCP flow control/connection setup/data transfer
* TCP reliability

« Congestion sources and collapse

e Congestion control basics

48
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Congestion “,

100 Mbps

« Different sources compete for resources
inside network

* Why is it a problem?
» Sources are unaware of current state of resource
e Sources are unaware of each other

¢ In many situations will result in < 1.5 Mbps of
throughput (congestion collapse)

49

Causes & Costs of Congestion i‘,
» Four senders — multihop paths  Q: What happens as rate
+ Timeout/retransmit increases?

Host A Host B
(mmw e n Py
IRERRANI )]
Host D ) u#il_u ~ =
R2EE§ Host C
R4 i 3
% e (D H3
PanNunninn
KVH IRRERA]
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Causes & Costs of Congestion “

Host A

I
in
* When packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

Congestion Collapse m

¢ Definition: Increase in network load results in
decrease of useful work done

* Many possible causes

e Spurious retransmissions of packets still in flight
¢ Classical congestion collapse
» How can this happen with packet conservation
¢ Solution: better timers and TCP congestion control

¢ Undelivered packets

» Packets consume resources and are dropped elsewhere in
network

« Solution: congestion control for ALL traffic
» Etc..

52
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Other Congestion Collapse Causes “,

* Fragments
* Mismatch of transmission and retransmission units

» Solutions

* Make network drop all fragments of a packet (early packet
discard in ATM)

e Do path MTU discovery
» Control traffic
e Large percentage of traffic is for control
» Headers, routing messages, DNS, etc.
 Stale or unwanted packets
e Packets that are delayed on long queues
» “Push” data that is never used

53

Where to Prevent Collapse? i‘,

e Can end hosts prevent problem?
e Yes, but must trust end hosts to do right thing
¢ E.g., sending host must adjust amount of data it puts in
the network based on detected congestion
e Can routers prevent collapse?
* No, not all forms of collapse

e Doesn’'t mean they can't help
« Sending accurate congestion signals
« |solating well-behaved from ill-behaved sources

54

Congestion Control and Avoidance “

* A mechanism which:
» Uses network resources efficiently
» Preserves fair network resource allocation
¢ Prevents or avoids collapse
» Congestion collapse is not just a theory
» Has been frequently observed in many networks

55

Approaches For Congestion Control n

« Two broad approaches towards congestion control:

End-to-end Network-assisted

* No explicit feedback from « Routers provide feedback

network to end systems
« Congestion inferred from » Explicit rate sender should
end-sys tem observed sendat
loss, delay . fé?%';?i'é'n”?éﬁﬁ\'?%ec bit,
» Approach taken by TCP TCP/IP ECN, ATM)
e Problem: makes routers
complicated

56
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Example: TCP Congestion Control “,

e Very simple mechanisms in network
» FIFO scheduling with shared buffer pool
» Feedback through packet drops
e TCP interprets packet drops as signs of congestion and
slows down
* This is an assumption: packet drops are not a sign of congestion in
all networks
« E.g. wireless networks
 Periodically probes the network to check whether more
bandwidth has become available.

57

Outline i‘,

e Transport introduction

e Error recovery & flow control

» TCP flow control/connection setup/data transfer
e TCP reliability

« Congestion sources and collapse

« Congestion control basics
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Objectives “

» Simple router behavior

 Distributedness

* Efficiency: Xy pee = ZXi(t)

 Fairness: (Zx)?/n(Zx?)

» Power: (throughput*/delay)

» Convergence: control system must be stable

59

Basic Control Model n

e Let's assume window-based control

* Reduce window when congestion is perceived
e How is congestion signaled?
« Either mark or drop packets
¢ When is a router congested?
< Drop tail queues — when queue is full
» Average queue length — at some threshold
 Increase window otherwise
¢ Probe for available bandwidth — how?

60
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Linear Control “,

* Many different possibilities for reaction to
congestion and probing
« Examine simple linear controls
e Window(t + 1) = a + b Window(t)
« Different a/b, for increase and ay/b, for decrease
» Supports various reaction to signals

Phase plots

N

» Simple way to visualize behavior of competing

connections over time

User 2's

 Increase/decrease additively
« Increased/decrease multiplicatively
* Which of the four combinations is optimal?

61

Allocation
Xz

Fairness Line

Efficiency Line

User 1's Allocation x;
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Phase plots

L\

» What are desirable properties?
* What if flows are not equal?

User 2's
Allocation
X2

Overload

-

Underutilization

Faimness Line

Optimal point

Efficiency Line

User 1's Allocation x;
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Additive Increase/Decrease

"N

» Both X; and X, increase/decrease by the same amount

over time

 Additive increase improves fairness and additive decrease reduces

fairness

User 2's
Allocation
X2

Fairness Line

Efficiency Line

User 1's Allocation x;

64
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Multiplicative Increase/Decrease

«

» Both X, and X, increase by the same factor over time
« Extension from origin — constant fairness

User 2's
Allocation
X2

Faimess Line
T,

To

Efficiency Line

User 1's Allocation x;
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Convergence to Efficiency

N

User 2's
Allocation
X2

: . .
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User 1's Allocation x;
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Distributed Convergence to Efficiency

L\

User 2's
Allocation
X2

Fairness Line

xH

Efficiency Line

User 1's Allocation x;
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Convergence to Fairness

"N

User 2's
Allocation
X2

Fairness Line

Efficiency Line

User 1's Allocation x;

68

17



Convergence to Efficiency & Fairness “,

Faimess Line

User 2's
Allocation
X2

Efficiency Line

User 1's Allocation x;
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Increase i‘,

Fairness Line

User 2's
Allocation
X2

Efficiency Line

User 1's Allocation x;
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Constraints “

» Distributed efficiency
e le., T Window(t+1) > = Window(t) during increase
e a >0&b>1
 Similarly, aj<0&by<1
* Must never decrease fairness
e a&b'smustbe>0
* a/b;>0andayby;>0
* Full constraints
°a;=0, 0<by<l,a>0andb>1
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What is the Right Choice? m

» Constraints limit us to AIMD
¢ Can have multiplicative term in increase (MAIMD)
* AIMD moves towards optimal point

Fairness Line

Xy

User 2's
Allocation
X2

Efficiency Line

User 1's Allocation x;

72
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Questions

«

» Fairness — why not support skew - AIMD/GAIMD

analysis

» More bits of feedback - DEChbit, XCP, Vegas
» Guess # of users - hard in async system, look at

loss rate?
+ Stateless vs. stateful design
e Wired vs. wireless
* Non-linear controls - Bionomial

73

TCP Congestion Control

N

« Congestion Control
* RED

» Assigned Reading

¢ [FJ93] Random Early Detection Gateways for
Congestion Avoidance

* [TFRC] Equation-Based Congestion Control for Unicast

Applications (two sections)
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