
1

15-744 Computer Networking

Review 2 – Transport Protocols

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer

• TCP reliability

• Congestion sources and collapse

• Congestion control basics

2

3

Transport Protocols

• Lowest level end-to-
end protocol.
• Header generated by

sender is interpreted
only by the destination

• Routers view transport
header as part of the
payload

• Not always true…
• Firewalls

7

6

5

7

6

5

Transport

IP

Datalink

Physical

Transport

IP

Datalink

Physical

IP

router

2 2

1 1

4

Functionality Split

• Network provides best-effort delivery
• End-systems implement many functions

• Reliability
• In-order delivery
• Demultiplexing
• Message boundaries
• Connection abstraction
• Congestion control
• …

2

5

Transport Protocols

• UDP provides just integrity and demux
• TCP adds…

• Connection-oriented
• Reliable
• Ordered
• Byte-stream
• Full duplex
• Flow and congestion controlled

• DCCP, RTP, SCTP -- not widely used.

6

UDP: User Datagram Protocol [RFC 768]

• “No frills,” “bare bones”
Internet transport
protocol

• “Best effort” service,
UDP segments may be:
• Lost
• Delivered out of order to

app

• Connectionless:
• No handshaking between

UDP sender, receiver
• Each UDP segment

handled independently of
others

Why is there a UDP?
• No connection establishment

(which can add delay)
• Simple: no connection state

at sender, receiver
• Small header
• No congestion control: UDP

can blast away as fast as
desired

7

UDP, cont.

• Often used for
streaming
multimedia apps
• Loss tolerant
• Rate sensitive

• Other UDP uses
(why?):
• DNS

• Reliable transfer
over UDP
• Must be at

application layer
• Application-specific

error recovery

Source port # Dest port #

32 bits

Application
data

(message)

UDP segment format

Length Checksum
Length, in

bytes of UDP
segment,
including
header

8

UDP Checksum

Sender:
• Treat segment contents as

sequence of 16-bit integers
• Checksum: addition (1’s

complement sum) of segment
contents

• Sender puts checksum value
into UDP checksum field

Receiver:
• Compute checksum of

received segment
• Check if computed checksum

equals checksum field value:
• NO - error detected
• YES - no error detected

But maybe errors
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment – optional use!

3

9

High-Level TCP Characteristics

• Protocol implemented entirely at the ends
• Fate sharing (on IP)

• Protocol has evolved over time and will continue
to do so

• Nearly impossible to change the header
• Use options to add information to the header
• Change processing at endpoints
• Backward compatibility is what makes it TCP

10

TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

11

Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion

collapse

1987
Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

12

TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
delay-based

congestion avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

NewReno startup
and loss recovery

1996
FACK TCP

(Mathis et al)
extension to SACK

4

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer

• TCP reliability

• Congestion sources and collapse

• Congestion control basics

13

Stop and Wait

• ARQ
• Receiver sends

acknowledgement (ACK)
when it receives packet

• Sender waits for ACK and
timeouts if it does not
arrive within some time
period

• Simplest ARQ protocol
• Send a packet, stop and

wait until ACK arrives
• Performance

• Can only send one
packet per round trip

14

Time

Ti
m

eo
ut

Sender Receiver

15

Recovering from Error

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Time Ti
m

eo
ut

Ti
m

eo
ut

ACK lost Packet lost Early timeout
DUPLICATE
PACKETS!!!

16

How to Recognize Resends?

• Use sequence numbers
• both packets and acks

• Sequence # in packet is finite
 How big should it be?
• For stop and wait?

• One bit – won’t send seq #1
until received ACK for seq #0

5

17

How to Keep the Pipe Full?

• Send multiple packets without
waiting for first to be acked
• Number of pkts in flight = window:

Flow control
• Reliable, unordered delivery

• Several parallel stop & waits
• Send new packet after each ack
• Sender keeps list of unack’ed packets;

resends after timeout
• Receiver same as stop & wait

• How large a window is needed?
• Suppose 10Mbps link, 4ms delay,

500byte pkts
• 1? 10? 20?

• Round trip delay * bandwidth =
capacity of pipe 18

Sliding Window

• Reliable, ordered delivery
• Receiver has to hold onto a packet until all prior

packets have arrived
• Why might this be difficult for just parallel stop & wait?
• Sender must prevent buffer overflow at receiver

• Circular buffer at sender and receiver
• Packets in transit  buffer size
• Advance when sender and receiver agree packets at

beginning have been received

19

ReceiverSender

Sender/Receiver State

… …

Sent & Acked Sent Not Acked

OK to Send Not Usable

… …

Max acceptable

Receiver window

Max ACK received Next seqnum

Received & Acked Acceptable Packet

Not Usable

Sender window

Next expected

20

Sequence Numbers

• How large do sequence numbers need to be?
• Must be able to detect wrap-around
• Depends on sender/receiver window size

• E.g.
• Max seq = 7, send win=recv win=7
• If pkts 0..6 are sent succesfully and all acks lost

• Receiver expects 7,0..5, sender retransmits old 0..6!!!

• Max sequence must be  send window + recv window

6

21

Window Sliding – Common Case

• On reception of new ACK (i.e. ACK for something that was
not acked earlier)
• Increase sequence of max ACK received
• Send next packet

• On reception of new in-order data packet (next expected)
• Hand packet to application
• Send cumulative ACK – acknowledges reception of all packets up

to sequence number
• Increase sequence of max acceptable packet

22

Loss Recovery

• On reception of out-of-order packet
• Send nothing (wait for source to timeout)
• Cumulative ACK (helps source identify loss)

• Timeout (Go-Back-N recovery)
• Set timer upon transmission of packet
• Retransmit all unacknowledged packets

• Performance during loss recovery
• No longer have an entire window in transit
• Can have much more clever loss recovery

23

Important Lessons

• Transport service
• UDP  mostly just IP service
• TCP  congestion controlled, reliable, byte stream

• Types of ARQ protocols
• Stop-and-wait  slow, simple
• Go-back-n  can keep link utilized (except w/ losses)
• Selective repeat  efficient loss recovery -- used in

SACK
• Sliding window flow control

• Addresses buffering issues and keeps link utilized

24

Good Ideas So Far…

• Flow control
• Stop & wait
• Parallel stop & wait
• Sliding window

• Loss recovery
• Timeouts
• Acknowledgement-driven recovery (selective repeat or

cumulative acknowledgement)

7

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer

• TCP reliability

• Congestion sources and collapse

• Congestion control basics

25

More on Sequence Numbers

• 32 Bits, Unsigned  for bytes not packets!

• Why So Big?
• For sliding window, must have
• |Sequence Space| > |Sending Window| + |Receiving

Window|
• No problem

• Also, want to guard against stray packets
• With IP, packets have maximum lifetime of 120s
• Sequence number would wrap around in this time at 286Mbps

26

27

TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes without

receiving an acknowledgement
• When the data is acknowledged then the window

slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has space for
• Original TCP always sent entire window

• Congestion control now limits this

28

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

8

29

acknowledged sent to be sent outside window

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
D. Checksum Urgent Pointer

Options…

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
D. Checksum Urgent Pointer

Options...

Packet Sent Packet Received

App write

Window Flow Control: Send Side

30

Performance Considerations

• The window size can be controlled by receiving
application

• Can change the socket buffer size from a default (e.g.
8Kbytes) to a maximum value (e.g. 64 Kbytes)

• The window size field in the TCP header limits the
window that the receiver can advertise

• 16 bits  64 KBytes
• 10 msec RTT  51 Mbit/second
• 100 msec RTT  5 Mbit/second
• TCP options to get around 64KB limit  scales window

size

31

Establishing Connection:
Three-Way handshake

• Each side notifies other of
starting sequence number it
will use for sending
• Why not simply chose 0?

• Must avoid overlap with earlier
incarnation

• Security issues

• Each side acknowledges
other’s sequence number
• SYN-ACK: Acknowledge

sequence number + 1
• Can combine second SYN

with first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer

• TCP reliability

• Congestion sources and collapse

• Congestion control basics

32

9

33

Reliability Challenges

• Congestion related losses
• Variable packet delays

• What should the timeout be?
• Reordering of packets

• How to tell the difference between a delayed packet
and a lost one?

TCP = Go-Back-N Variant

• Sliding window with cumulative acks
• Receiver can only return a single “ack” sequence number to

the sender.
• Acknowledges all bytes with a lower sequence number
• Starting point for retransmission
• Duplicate acks sent when out-of-order packet received

• But: sender only retransmits a single packet.
• Reason???

• Only one that it knows is lost
• Network is congested  shouldn’t overload it

• Error control is based on byte sequences, not
packets.
• Retransmitted packet can be different from the original lost

packet – Why?

34

35

Round-trip Time Estimation

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:

• Low RTT estimate
• unneeded retransmissions

• High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – never more than a

window worth of packets in flight

36

Original TCP Round-trip Estimator

• Round trip times
exponentially averaged:
• New RTT =  (old RTT) +

(1 - ) (new sample)
• Recommended value for

: 0.8 - 0.9
• 0.875 for most TCP’s

0

0.5

1

1.5

2

2.5

• Retransmit timer set to (b * RTT), where b = 2
• Every time timer expires, RTO exponentially backed-off

• Not good at preventing premature timeouts

10

37

RTT Sample Ambiguity

• Karn’s RTT Estimator
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this segment
• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful transmission

A B

Sample
RTT

RTO

A B

Sample
RTT

RTO
X

38

Jacobson’s Retransmission Timeout

• Key observation:
• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation

• RTO = RTT + 4 * rttvar
• new_rttvar =  * dev + (1- ) old_rttvar

• Dev = linear deviation
• Inappropriately named – actually smoothed linear

deviation

39

Timestamp Extension

• Used to improve timeout mechanism by more
accurate measurement of RTT

• When sending a packet, insert current time into
option
• 4 bytes for time, 4 bytes for echo a received timestamp

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet

40

Timer Granularity

• Many TCP implementations set RTO in multiples
of 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary quickly due to

cross traffic
• Reduce timer expensive timer interrupts on hosts

• What happens for the first couple of packets?
• Pick a very conservative value (seconds)

11

41

Fast Retransmit -- Avoiding Timeouts

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequence

• When can duplicate acks occur?
• Loss
• Packet re-ordering
• Window update – advertisement of new flow control window

• Assume re-ordering is infrequent and not of large
magnitude
• Use receipt of 3 or more duplicate acks as indication of loss
• Don’t wait for timeout to retransmit packet

42

Fast Retransmit

Time

Sequence No Duplicate Acks

RetransmissionX

Packets

Acks

43

TCP (Reno variant)

Time

Sequence No
X

X

XX

Now what? - timeout

Packets

Acks

44

SACK

• Basic problem is that cumulative acks provide little
information

• Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
• Implemented as a TCP option
• Encoded as a set of received byte ranges (max of 4

ranges/often max of 3)
• When to retransmit?

• Still need to deal with reordering  wait for out of order
by 3pkts

12

45

SACK

Time

Sequence No
X

X

XX

Now what? – send
retransmissions as soon
as detected

Packets

Acks

46

Performance Issues

• Timeout >> fast rexmit

• Need 3 dupacks/sacks

• Not great for small transfers
• Don’t have 3 packets outstanding

• What are real loss patterns like?

47

Important Lessons

• Three-way TCP Handshake
• TCP timeout calculation  how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?
• How to avoid them?  e.g. fast retransmit

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer

• TCP reliability

• Congestion sources and collapse

• Congestion control basics

48

13

49

Congestion

• Different sources compete for resources
inside network

• Why is it a problem?
• Sources are unaware of current state of resource
• Sources are unaware of each other
• In many situations will result in < 1.5 Mbps of

throughput (congestion collapse)

10 Mbps

100 Mbps

1.5 Mbps

50

Causes & Costs of Congestion

• Four senders – multihop paths
• Timeout/retransmit

Q: What happens as rate
increases?

51

Causes & Costs of Congestion

• When packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

Congestion Collapse

• Definition: Increase in network load results in
decrease of useful work done

• Many possible causes
• Spurious retransmissions of packets still in flight

• Classical congestion collapse
• How can this happen with packet conservation
• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in

network
• Solution: congestion control for ALL traffic

• Etc..
52

14

53

Other Congestion Collapse Causes

• Fragments
• Mismatch of transmission and retransmission units
• Solutions

• Make network drop all fragments of a packet (early packet
discard in ATM)

• Do path MTU discovery

• Control traffic
• Large percentage of traffic is for control

• Headers, routing messages, DNS, etc.

• Stale or unwanted packets
• Packets that are delayed on long queues
• “Push” data that is never used

54

Where to Prevent Collapse?

• Can end hosts prevent problem?
• Yes, but must trust end hosts to do right thing
• E.g., sending host must adjust amount of data it puts in

the network based on detected congestion
• Can routers prevent collapse?

• No, not all forms of collapse
• Doesn’t mean they can’t help

• Sending accurate congestion signals
• Isolating well-behaved from ill-behaved sources

55

Congestion Control and Avoidance

• A mechanism which:
• Uses network resources efficiently
• Preserves fair network resource allocation
• Prevents or avoids collapse

• Congestion collapse is not just a theory
• Has been frequently observed in many networks

Approaches For Congestion Control

End-to-end

• No explicit feedback from
network

• Congestion inferred from
end-sys tem observed
loss, delay

• Approach taken by TCP

Network-assisted

• Routers provide feedback
to end systems
• Explicit rate sender should

send at
• Single bit indicating

congestion (SNA, DEC bit,
TCP/IP ECN, ATM)

• Problem: makes routers
complicated

56

• Two broad approaches towards congestion control:

15

57

Example: TCP Congestion Control

• Very simple mechanisms in network
• FIFO scheduling with shared buffer pool
• Feedback through packet drops

• TCP interprets packet drops as signs of congestion and
slows down

• This is an assumption: packet drops are not a sign of congestion in
all networks

• E.g. wireless networks

• Periodically probes the network to check whether more
bandwidth has become available.

Outline

• Transport introduction

• Error recovery & flow control

• TCP flow control/connection setup/data transfer

• TCP reliability

• Congestion sources and collapse

• Congestion control basics

58

59

Objectives

• Simple router behavior
• Distributedness
• Efficiency: Xknee = xi(t)
• Fairness: (xi)2/n(xi

2)
• Power: (throughput/delay)
• Convergence: control system must be stable

60

Basic Control Model

• Let’s assume window-based control
• Reduce window when congestion is perceived

• How is congestion signaled?
• Either mark or drop packets

• When is a router congested?
• Drop tail queues – when queue is full
• Average queue length – at some threshold

• Increase window otherwise
• Probe for available bandwidth – how?

16

61

Linear Control

• Many different possibilities for reaction to
congestion and probing
• Examine simple linear controls
• Window(t + 1) = a + b Window(t)
• Different ai/bi for increase and ad/bd for decrease

• Supports various reaction to signals
• Increase/decrease additively
• Increased/decrease multiplicatively
• Which of the four combinations is optimal?

62

Phase plots

• Simple way to visualize behavior of competing
connections over time

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

63

Phase plots

• What are desirable properties?
• What if flows are not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2
Optimal point

Overload

Underutilization

Additive Increase/Decrease

• Both X1 and X2 increase/decrease by the same amount
over time
• Additive increase improves fairness and additive decrease reduces

fairness

64

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

17

Multiplicative Increase/Decrease

• Both X1 and X2 increase by the same factor over time
• Extension from origin – constant fairness

65

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

66

Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

67

Distributed Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

a=0
b=1

68

Convergence to Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xH’

18

69

Convergence to Efficiency & Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xH’

70

Increase

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xL

71

Constraints

• Distributed efficiency
• I.e.,  Window(t+1) >  Window(t) during increase

• ai > 0 & bi ≥ 1
• Similarly, ad < 0 & bd ≤ 1

• Must never decrease fairness
• a & b’s must be ≥ 0
• ai/bi > 0 and ad/bd ≥ 0

• Full constraints
• ad = 0, 0 ≤ bd < 1, ai > 0 and bi ≥ 1

What is the Right Choice?

• Constraints limit us to AIMD
• Can have multiplicative term in increase (MAIMD)
• AIMD moves towards optimal point

72

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

19

Questions

• Fairness – why not support skew  AIMD/GAIMD
analysis

• More bits of feedback  DECbit, XCP, Vegas
• Guess # of users  hard in async system, look at

loss rate?
• Stateless vs. stateful design
• Wired vs. wireless
• Non-linear controls  Bionomial

73 74

TCP Congestion Control

• Congestion Control
• RED

• Assigned Reading
• [FJ93] Random Early Detection Gateways for

Congestion Avoidance
• [TFRC] Equation-Based Congestion Control for Unicast

Applications (two sections)

