“. 15-744 Computer Networking

Review 2 — Transport Protocols

Outline

N

e Transport introduction

e Error recovery & flow control

» TCP flow control/connection setup/data transfer

e TCP reliability

« Congestion sources and collapse

« Congestion control basics

Transport Protocols

L\

¢ Lowest level end-to-
end protocol.
* Header generated by

sender is interpreted
only by the destination

* Routers view transport
header as part of the
payload

¢ Not always true...

« Firewalls

Transport g g Transport

Datalin

Physical

-] [+ — — |

- - KCmlmiall Datalink

Physical

router

Functionality Split

"N

» Network provides best-effort delivery
» End-systems implement many functions

¢ Reliability

* In-order delivery

e Demultiplexing

¢ Message boundaries
» Connection abstraction
e Congestion control

Transport Protocols

«

» UDP provides just integrity and demux
* TCP adds...

Connection-oriented

Reliable

Ordered

Byte-stream

Full duplex

Flow and congestion controlled

e DCCP, RTP, SCTP -- not widely used.

UDP: User Datagram Protocol [RFC 768] i‘,

* “No frills,” “bare bones”
Internet transport
protocol

» “Best effort” service,
UDP segments may be:
¢ Lost
« Delivered out of order to
app
» Connectionless:

* No handshaking between
UDP sender, receiver

* Each UDP segment
handled independently of
others

Why is there a UDP?

* No connection establishment
(which can add delay)

» Simple: no connection state
at sender, receiver

* Small header

* No congestion control: UDP
can blast away as fast as
desired

UDP, cont.

L\

e Often used for

streaming
multimedia apps Lengih, in | Source port# | Dest port #
¢ Loss tolerant bytes of UDP [~Length Checksum
* Rate sensitive

e Other UDP uses header
(why?):

32 bits

segment,
including

« DNS Application

¢ Reliable transfer
over UDP

* Must be at
application layer

data
(message)

« Application-specific

error recovery

UDP segment format

UDP Checksum

"N

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment — optional use!

Sender:

» Treat segment contents as
sequence of 16-bit integers

* Checksum: addition (1's

complement sum) of segment

contents

¢ Sender puts checksum value
into UDP checksum field

Receiver:
* Compute checksum of
received segment

¢ Check if computed checksum
equals checksum field value:

* NO - error detected
e YES - no error detected

But maybe errors
nonetheless?

High-Level TCP Characteristics “, TCP Header i‘,

* Protocol implemented entirely at the ends

 Fate sharing (on IP) Source port ‘ Destination port
« Protocol has evolved over time and will continue Flags: SYN Sequence number
d 9s: Acknowledgement
to do so FIN
« Nearly impossible to change the header EEgET Hd”-e”‘ 0 ‘ Flags | Advertised window
* Use options to add information to the header URG Checksum Urgent pointer
» Change processing at endpoints ACK Options (variable)
» Backward compatibility is what makes it TCP

Data

1975 Loa 1994 1996
Nagel's algorithm
Three-way handshake 1987 T/TcP SACK TCP
to reduce overhead
Raymond Tomlinson . Karn's algorithm (Braden) (Floyd et al)
of small packets; T 1990 Transaction i
In SIGCOMM 75 predicts congestion to better estimate 4.3BSD Reno nsac Selective
collapse round-trip time fast retransmit Acknowledgement
delayed ACK’s
1983
BSD Unix 4.2 1986 1988 1993 1994 1996 1996
1974 supports TCP/IP Congestion Van Jacobson's TCP Vegas ECN Hoe FACK TCP
TCP described by collapse algorithms (Brakmo et al) (Floyd) NewReno startup (Mathis et al)
Vint Cerf and Bob Kahn observed congestion avoidance delay-based Explicit and loss recovery extension to SACK
In IEEE Trans Comm 1982 and congestion control congestion avoidance - Congestion
TCP & IP (most implemented in Notification
RFC 793 & 791 4.3BSD Tahoe)
ELPPPPP . 1 > . I i »
1975 1980 1985 1990 1993 1994 1996
11 12

Outline “,

Stop and Wait

e Transport introduction

» Error recovery & flow control

» TCP flow control/connection setup/data transfer
» TCP reliability

» Congestion sources and collapse

» Congestion control basics

13

N

Recovering from Error “

:--%‘ -1 Packe; ;--%
5 5| F| s
o Q: ol NS
£ ACK =4 £ O
Time| ~: §/ =4 = v
E E = aCket
——Packe | —Pack, :
i t ; et i
18 I - g | Aok —
SR A EL
ACK lost Packet lost Early timeout
DUPLICATE

PACKETS!!

15

« ARQ
* Receiver sends
acknowledgement (ACK)
when it receives packet d)
« Sender waits for ACK and Sender Receiver
timeouts if it does not
S(rarri;gedwithin some time 5 %’
. D
« Simplest ARQ protocol E ACK
» Send a packet, stop and |
wait until ACK arrives
 Performance Time
» Can only send one
packet per round trip
14
How to Recognize Resends? n
* Use sequence numbers
¢ both packets and acks %
* Sequence # in packet is finite o
- How big should it be? Ko
 For stop and wait? Pkt o
+ One bit —won’'t send seq #1 oK
until received ACK for seq #0 L

16

How to Keep the Pipe Full? “,

» Send multiple packets without
waiting for first to be acked
* Number of pkts in flight = window:
Flow control
* Reliable, unordered delivery
» Several parallel stop & waits
» Send new packet after each ack

e Sender keeps list of unack’ed packets;
resends after timeout

¢ Receiver same as stop & wait
* How large a window is needed?

N/

e Suppose 10Mbps link, 4ms delay,

500byte pkts
« 17107 20?
* Round trip delay * bandwidth =
capacity of pipe 17

Sliding Window O\ Y

« Reliable, ordered delivery
* Receiver has to hold onto a packet until all prior
packets have arrived
* Why might this be difficult for just parallel stop & wait?
e Sender must prevent buffer overflow at receiver
 Circular buffer at sender and receiver
¢ Packets in transit < buffer size

e Advance when sender and receiver agree packets at
beginning have been received

Sender/Receiver State “

Sender Receiver

Max ACK received Next seqnum Next expected Max acceptable

I Sent & Acked |:| Sent Not Acked I Received & Acked D Acceptable Packet

I OK to Send D Not Usable DNOI Usable

& 1L TUT T el g

19

Sequence Numbers n

« How large do sequence numbers need to be?
¢ Must be able to detect wrap-around
¢ Depends on sender/receiver window size
- E.Q.
* Max seq = 7, send win=recv win=7
 If pkts 0..6 are sent succesfully and all acks lost
« Receiver expects 7,0..5, sender retransmits old 0..6!!!

e Max sequence must be > send window + recv window

20

Window Sliding — Common Case “,

e On reception of new ACK (i.e. ACK for something that was
not acked earlier)
* Increase sequence of max ACK received
* Send next packet
e On reception of new in-order data packet (next expected)
¢ Hand packet to application
« Send cumulative ACK — acknowledges reception of all packets up
to sequence number
* Increase sequence of max acceptable packet

21

Loss Recovery i‘

* On reception of out-of-order packet

« Send nothing (wait for source to timeout)

e Cumulative ACK (helps source identify loss)
e Timeout (Go-Back-N recovery)

e Set timer upon transmission of packet

e Retransmit all unacknowledged packets
e Performance during loss recovery

* No longer have an entire window in transit

e Can have much more clever loss recovery

22

Important Lessons “

» Transport service
e UDP > mostly just IP service
e TCP - congestion controlled, reliable, byte stream
* Types of ARQ protocols
 Stop-and-wait - slow, simple
e Go-back-n = can keep link utilized (except w/ losses)
» Selective repeat > efficient loss recovery -- used in
SACK
« Sliding window flow control
» Addresses buffering issues and keeps link utilized

23

Good Ideas So Far... n

¢ Flow control

« Sliding window
* Loss recovery

* Timeouts

« Acknowledgement-driven recovery (selective repeat or
cumulative acknowledgement)

24

Outline “,

» Transport introduction

» Error recovery & flow control

e TCP flow control/connection setup/data transfer
» TCP reliability

» Congestion sources and collapse

» Congestion control basics

25

More on Sequence Numbers i‘,

» 32 Bits, Unsigned - for bytes not packets!

* Why So Big?
* For sliding window, must have
e |Sequence Space| > |Sending Window| + |Receiving
Window|

¢ No problem

¢ Also, want to guard against stray packets
* With IP, packets have maximum lifetime of 120s
* Sequence number would wrap around in this time at 286Mbps

26

TCP Flow Control “

e TCP is a sliding window protocol

« For window size n, can send up to n bytes without
receiving an acknowledgement

« When the data is acknowledged then the window
slides forward

e Each packet advertises a window size

¢ Indicates number of bytes the receiver has space for
e Original TCP always sent entire window

» Congestion control now limits this

27

Window Flow Control: Send Side i‘

window

Sent and acked | Sent but not acked

T

Next to be sent

28

Window Flow Control: Send Side “,

Packet Sent Packet Received
Acknowledgment

HL/Flags m HL/Flags_—
D_ Checksum_| Urgent pinter | gsum | Urgent Pointer

App write
| | | |

acknowledged sent to be sent outside window

29

Performance Considerations i‘,

» The window size can be controlled by receiving
application
» Can change the socket buffer size from a default (e.g.
8Kbytes) to a maximum value (e.g. 64 Kbytes)
e The window size field in the TCP header limits the
window that the receiver can advertise
* 16 bits > 64 KBytes
* 10 msec RTT - 51 Mbit/second
¢ 100 msec RTT - 5 Mbit/second

» TCP options to get around 64KB limit > scales window
size

30

Establishing Connection: “

Three-Way handshake

» Each side notifies other of
starting sequence number it SYN: SeqC
will use for sending

* Why not simply chose 0?

» Must avoid overlap with earlier ACK: SeqC+1
incarnation SYN: SeqS
e Security issues
e Each side acknowledges ACK: SeqS+

other’s sequence number
¢ SYN-ACK: Acknowledge
sequence number + 1
e Can combine second SYN
with first ACK

Client Server

31

Outline n

e Transport introduction
 Error recovery & flow control

TCP flow control/connection setup/data transfer

TCP reliability
« Congestion sources and collapse

e Congestion control basics

32

Reliability Challenges O\ Y

e Congestion related losses
» Variable packet delays

e What should the timeout be?
* Reordering of packets

* How to tell the difference between a delayed packet
and a lost one?

33

TCP = Go-Back-N Variant i‘,

« Sliding window with cumulative acks
¢ Receiver can only return a single “ack” sequence number to
the sender.
* Acknowledges all bytes with a lower sequence number
 Starting point for retransmission
« Duplicate acks sent when out-of-order packet received
« But: sender only retransmits a single packet.
* Reason???
* Only one that it knows is lost
* Network is congested - shouldn’t overload it
e Error control is based on byte sequences, not
packets.

» Retransmitted packet can be different from the original lost
packet — Why?

Round-trip Time Estimation “

* Wait at least one RTT before retransmitting

» Importance of accurate RTT estimators:

e Low RTT estimate
¢ unneeded retransmissions

e High RTT estimate
e poor throughput
RTT estimator must adapt to change in RTT
 But not too fast, or too slow!
* Spurious timeouts

» “Conservation of packets” principle — never more than a
window worth of packets in flight

35

Original TCP Round-trip Estimator n

* Round trip times 2
exponentially averaged: -

¢ New RTT =« (old RTT) +
(1 - o) (new sample) 15
* Recommended value for
a:0.8-0.9 (

« 0.875 for most TCP's 05

¢ Retransmit timer setto (b * RTT), where b = 2
« Every time timer expires, RTO exponentially backed-off

¢ Not good at preventing premature timeouts

RTT Sample Ambiguity i‘.

A B A B
O

RTO

Original transmission

IRTO

Sample retrans, . Sample
RTT ansrnlssion RTT P I
pck

e Karn's RTT Estimator

 If a segment has been retransmitted:
» Don't count RTT sample on ACKs for this segment
» Keep backed off time-out for next packet
* Reuse RTT estimate only after one successful transmission
37

Jacobson’s Retransmission Timeout i‘

* Key observation:
At high loads round trip variance is high
* Solution:

» Base RTO on RTT and standard deviation
e RTO = RTT + 4 * rttvar

* new_rttvar = * dev + (1- B) old_rttvar
* Dev = linear deviation

« Inappropriately named — actually smoothed linear
deviation

38

Timestamp Extension “

» Used to improve timeout mechanism by more
accurate measurement of RTT
* When sending a packet, insert current time into
option
« 4 bytes for time, 4 bytes for echo a received timestamp
» Receiver echoes timestamp in ACK
 Actually will echo whatever is in timestamp
» Removes retransmission ambiguity
e Can get RTT sample on any packet

39

Timer Granularity “

e Many TCP implementations set RTO in multiples
of 200,500,1000ms
e Why?
¢ Avoid spurious timeouts — RTTs can vary quickly due to
cross traffic

* Reduce timer expensive timer interrupts on hosts

* What happens for the first couple of packets?
¢ Pick a very conservative value (seconds)

40

10

Fast Retransmit -- Avoiding Timeouts “,

* What are duplicate acks (dupacks)?
» Repeated acks for the same sequence
* When can duplicate acks occur?
e Loss
» Packet re-ordering
« Window update — advertisement of new flow control window
» Assume re-ordering is infrequent and not of large
magnitude
» Use receipt of 3 or more duplicate acks as indication of loss
« Don't wait for timeout to retransmit packet

41

Fast Retransmit i‘,

. Retransmission

Sequence No % «— puplicate Acks

cocoommmmmmmp
000000

commmmE

omm

M Packets
@Acks

Time

42

TCP (Reno variant) “

| |
|
L]
X
)'(.
- ° Now what? - timeout
W =
[] © oo
Sequence No m o
[] o
|] o
L} o
|] o
[] (<}
L o]
|] [*]
L] o
|] [*]
- <]
] (<]
- o
M Packets
Acks -
e Time

43

SACK i‘

» Basic problem is that cumulative acks provide little
information

» Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
* Implemented as a TCP option

* Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)

¢ When to retransmit?

« Still need to deal with reordering = wait for out of order
by 3pkts

44

11

SACK

«

Sequence No

commmm

Ml Packets
@Acks

coocomEEEEEEX

EEXE R

oco0o0o0o000

Now what? — send
retransmissions as soon

as detected

Time

45

Performance Issues i‘,

* Timeout >> fast rexmit

Need 3 dupacks/sacks

Not great for small transfers
« Don'’t have 3 packets outstanding

What are real loss patterns like?

46

Important Lessons

L\

» Three-way TCP Handshake

e TCP timeout calculation = how is RTT estimated

* Modern TCP loss recovery

e Why are timeouts bad?
* How to avoid them? - e.g. fast retransmit

47

Outline i‘

e Transport introduction

 Error recovery & flow control

e TCP flow control/connection setup/data transfer
* TCP reliability

« Congestion sources and collapse

e Congestion control basics

48

12

Congestion “,

100 Mbps

« Different sources compete for resources
inside network

* Why is it a problem?
» Sources are unaware of current state of resource
e Sources are unaware of each other

¢ In many situations will result in < 1.5 Mbps of
throughput (congestion collapse)

49

Causes & Costs of Congestion i‘,
» Four senders — multihop paths Q: What happens as rate
+ Timeout/retransmit increases?

Host A Host B
(mmw e n Py
IRERRANI)]
Host D) u#il_u ~ =
R2EE§ Host C
R4 i 3
% e (D H3
PanNunninn
KVH IRRERA]

50

Causes & Costs of Congestion “

Host A

I
in
* When packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

Congestion Collapse m

¢ Definition: Increase in network load results in
decrease of useful work done

* Many possible causes

e Spurious retransmissions of packets still in flight
¢ Classical congestion collapse
» How can this happen with packet conservation
¢ Solution: better timers and TCP congestion control

¢ Undelivered packets

» Packets consume resources and are dropped elsewhere in
network

« Solution: congestion control for ALL traffic
» Etc..

52

13

Other Congestion Collapse Causes “,

* Fragments
* Mismatch of transmission and retransmission units

» Solutions

* Make network drop all fragments of a packet (early packet
discard in ATM)

e Do path MTU discovery
» Control traffic
e Large percentage of traffic is for control
» Headers, routing messages, DNS, etc.
 Stale or unwanted packets
e Packets that are delayed on long queues
» “Push” data that is never used

53

Where to Prevent Collapse? i‘,

e Can end hosts prevent problem?
e Yes, but must trust end hosts to do right thing
¢ E.g., sending host must adjust amount of data it puts in
the network based on detected congestion
e Can routers prevent collapse?
* No, not all forms of collapse

e Doesn’'t mean they can't help
« Sending accurate congestion signals
« |solating well-behaved from ill-behaved sources

54

Congestion Control and Avoidance “

* A mechanism which:
» Uses network resources efficiently
» Preserves fair network resource allocation
¢ Prevents or avoids collapse
» Congestion collapse is not just a theory
» Has been frequently observed in many networks

55

Approaches For Congestion Control n

« Two broad approaches towards congestion control:

End-to-end Network-assisted

* No explicit feedback from « Routers provide feedback

network to end systems
« Congestion inferred from » Explicit rate sender should
end-sys tem observed sendat
loss, delay . fé?%';?i'é'n”?éﬁﬁ\'?%ec bit,
» Approach taken by TCP TCP/IP ECN, ATM)
e Problem: makes routers
complicated

56

14

Example: TCP Congestion Control “,

e Very simple mechanisms in network
» FIFO scheduling with shared buffer pool
» Feedback through packet drops
e TCP interprets packet drops as signs of congestion and
slows down
* This is an assumption: packet drops are not a sign of congestion in
all networks
« E.g. wireless networks
 Periodically probes the network to check whether more
bandwidth has become available.

57

Outline i‘,

e Transport introduction

e Error recovery & flow control

» TCP flow control/connection setup/data transfer
e TCP reliability

« Congestion sources and collapse

« Congestion control basics

58

Objectives “

» Simple router behavior

 Distributedness

* Efficiency: Xy pee = ZXi(t)

 Fairness: (Zx)?/n(Zx?)

» Power: (throughput*/delay)

» Convergence: control system must be stable

59

Basic Control Model n

e Let's assume window-based control

* Reduce window when congestion is perceived
e How is congestion signaled?
« Either mark or drop packets
¢ When is a router congested?
< Drop tail queues — when queue is full
» Average queue length — at some threshold
 Increase window otherwise
¢ Probe for available bandwidth — how?

60

15

Linear Control “,

* Many different possibilities for reaction to
congestion and probing
« Examine simple linear controls
e Window(t + 1) = a + b Window(t)
« Different a/b, for increase and ay/b, for decrease
» Supports various reaction to signals

Phase plots

N

» Simple way to visualize behavior of competing

connections over time

User 2's

 Increase/decrease additively
« Increased/decrease multiplicatively
* Which of the four combinations is optimal?

61

Allocation
Xz

Fairness Line

Efficiency Line

User 1's Allocation x;

62

Phase plots

L\

» What are desirable properties?
* What if flows are not equal?

User 2's
Allocation
X2

Overload

-

Underutilization

Faimness Line

Optimal point

Efficiency Line

User 1's Allocation x;

63

Additive Increase/Decrease

"N

» Both X; and X, increase/decrease by the same amount

over time

 Additive increase improves fairness and additive decrease reduces

fairness

User 2's
Allocation
X2

Fairness Line

Efficiency Line

User 1's Allocation x;

64

16

Multiplicative Increase/Decrease

«

» Both X, and X, increase by the same factor over time
« Extension from origin — constant fairness

User 2's
Allocation
X2

Faimess Line
T,

To

Efficiency Line

User 1's Allocation x;

65

Convergence to Efficiency

N

User 2's
Allocation
X2

: . .
< Fairness Line
><><

e xH

O

ERENCRE

B CHE

EEIESENE

BN

EEIEIE I

BN

EEIENE N N

BN RN

EEE NN IE R I

BN A NG

RIS E I NI
NN T NN

NS NI

BN NI S

e T TG T
BN I

e e T T TN N

DI NN NN NN D e

EE ST T T T T T Efficiency Line
N I NN NN I I e
e e T e e T e e T N e
N NN IR N

User 1's Allocation x;

66

Distributed Convergence to Efficiency

L\

User 2's
Allocation
X2

Fairness Line

xH

Efficiency Line

User 1's Allocation x;

67

Convergence to Fairness

"N

User 2's
Allocation
X2

Fairness Line

Efficiency Line

User 1's Allocation x;

68

17

Convergence to Efficiency & Fairness “,

Faimess Line

User 2's
Allocation
X2

Efficiency Line

User 1's Allocation x;

69

Increase i‘,

Fairness Line

User 2's
Allocation
X2

Efficiency Line

User 1's Allocation x;

70

Constraints “

» Distributed efficiency
e le., T Window(t+1) > = Window(t) during increase
e a >0&b>1
 Similarly, aj<0&by<1
* Must never decrease fairness
e a&b'smustbe>0
* a/b;>0andayby;>0
* Full constraints
°a;=0, 0<by<l,a>0andb>1

71

What is the Right Choice? m

» Constraints limit us to AIMD
¢ Can have multiplicative term in increase (MAIMD)
* AIMD moves towards optimal point

Fairness Line

Xy

User 2's
Allocation
X2

Efficiency Line

User 1's Allocation x;

72

18

Questions

«

» Fairness — why not support skew - AIMD/GAIMD

analysis

» More bits of feedback - DEChbit, XCP, Vegas
» Guess # of users - hard in async system, look at

loss rate?
+ Stateless vs. stateful design
e Wired vs. wireless
* Non-linear controls - Bionomial

73

TCP Congestion Control

N

« Congestion Control
* RED

» Assigned Reading

¢ [FJ93] Random Early Detection Gateways for
Congestion Avoidance

* [TFRC] Equation-Based Congestion Control for Unicast

Applications (two sections)

74

19

