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15-744: Computer Networking

L-25 Privacy

Announcements

• This is the last lecture!
• No lectures next week
• Let me know if you want to meet about project

• Final on Wednesday 12/7
• Plan for project:

• Replace poster by short presentations on the 
l t d f llast day of classes

• Project report due Monday 12/12
• 6-8 pages 
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Overview

• Routing privacy

• Web Privacy

• Wireless Privacy
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Randomized Routing

• Hide message source by routing it randomly

slide 4

• Hide message source by routing it randomly
• Popular technique: Crowds, Freenet, Onion routing

• Routers don’t know for sure if the apparent 
source of a message is the true sender or 
another router
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Onion Routing

R R RR R R4
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Bob
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R
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• Sender chooses a random sequence of routers 
• Some routers are honest, some controlled by attacker
• Sender controls the length of the path

slide 5

Route Establishment

RR2Ali R4

R1

R2 R3 BobAlice

{R k } {                                         }
{B,k4}pk(R4),{               }k4

{M}pk(B)

slide 6

{R2,k1}pk(R1),{                                                                                               }k1
{R3,k2}pk(R2),{                                                                    }k2

{R4,k3}pk(R3),{                                         }k3

Routing info for each link encrypted with router’s public key
Each router learns only the identity of the next router

Tor
• Second-generation onion routing network

• http://tor.eff.org
• Developed by Roger Dingledine Nick MathewsonDeveloped by Roger Dingledine, Nick Mathewson 

and Paul Syverson
• Specifically designed for low-latency anonymous 

Internet communications
• Running since October 2003
• 100s nodes on four continents, thousands of 

usersusers
• “Easy-to-use” client proxy

• Freely available, can use it for anonymous 
browsing

slide 7

How does Tor work?
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How does Tor work? Tor Circuit Setup (1)

• Client proxy establish a symmetric session 
key and circuit with Onion Router #1

slide 10

Tor Circuit Setup (2)

• Client proxy extends the circuit by establishing 
a symmetric session key with Onion Router #2
• Tunnel through Onion Router #1 (don’t need     )

slide 11

Tor Circuit Setup (3)

• Client proxy extends the circuit by 
establishing a symmetric session key with 
Onion Router #3
• Tunnel through Onion Routers #1 and #2

slide 12



4

Using a Tor Circuit

• Client applications connect and communicate 
over the established Tor circuit

slide 13

Location Hidden Servers

• Goal: deploy a server on the Internet that 
anyone can connect to without knowing 
where it is or who runs it

• Accessible from anywhere
• Resistant to censorship
• Can survive full-blown DoS attack
• Resistant to physical attack

• Can’t find the physical server!

slide 14

Creating a Location Hidden Server

Server creates onion routes
to “introduction points”

Client obtains service
descriptor and intro point
address from directory

slide 15

Server gives intro points’
descriptors and addresses 
to service lookup directory

Using a Location Hidden Server

Client creates onion route
to a “rendezvous point” If server chooses to talk to client,

connect to rendezvous point

Rendezvous point
mates the circuits
from client & server

li d dd f h

pfrom client & server

slide 16

Client sends address of the
rendezvous point and any
authorization, if needed, to
server through intro point
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Overview

• Routing privacy

• Web Privacy

• Wireless Privacy

17

An “Old” Problem

• Many governments/companies trying to limit 
their citizens’ access to information
• Censorship (prevent access)
• Punishment (deter access)
• China, Saudi Arabia, HP

• How can we defeat such attempts?
Ci t hi
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• Circumvent censorship
• Undetectably

Proxy-Based Web Censorship

• Government manages national web firewall
• Not optional---catches ALL web traffic

• Block certain requests
• Possibly based on content
• More commonly on IP address/publisher
• China: Western news sites, Taiwan material

• Log requests to detect troublemakers
• Even without blocking, may just watch traffic

• But they don’t turn off the whole net
• Creates a crack in their barrier

19

Goal

• Circumvent censor via innocent web activity  
• Normal web server and client cooperate to 

create covert channel
• Without consequence for client
• And without consequence for server

• Broad participation increases system 
robustnessrobustness

• Ensure offering service doesn’t lead to trouble 
• e.g., loss of business through being blocked

• Also, “law knows no boundaries”
20
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The Big Picture

21

Requirements

• Client deniability
• Detection could be embarrassing or worse

• Client statistical deniability
• Even suspicion could be a problem

• Server covertness/statistical deniability
• If server detected, can be blocked

• Communication robustness
• Even without detecting, censor could scramble 

covert channel
• Performance (bandwidth, latency)

22

(Un)related Work

• SSL
• Encrypted connection---can’t tell content
• Suspicious!
• Doesn’t help reach blocked servers
• Govt. can require revealing SSL keys

• Anonymizing Proxies
P t f k i id tit f li t• Prevent servers from knowing identity of client

• But proxy inside censor can’t reach content
• And proxy outside censor can be blocked
• And use of proxy is suspicious

23

Safeweb/Triangle boy

• Operation
• Client contacts triangle-boy “reflector”
• Reflector forwards requests to blocked server
• Server returns content to client (IP spoof)

• Circumvents censorship
• But still easily detected

24

• “Local monitoring of the user only reveals an 
encrypted conversation between User and 
Triangle Boy machine.” (Safeweb manual)
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Summary

• Easy to hide what you are getting
• Just use SSL

• And easy to circumvent censors
• Safeweb

• But hard to hide that you are doing it

25

Infranet: Circumventing Censors

• Censors allow certain traffic
• Use to construct a covert channel

• Talk to normal servers
• Embed requests for censored content in 

normal-seeming requests
• Receive censored content hidden in normal-

26

Receive censored content hidden in normal
seeming responses

• Requester: client asking for hidden content
• Responder: server covertly providing it

System Architecture

27

Receiving Content is Easier Half

• Responder is a normal web server, serving 
images (among other things)

• Encrypt data using requestor key
• Embed in “unimportant, random” bits of 

images
• E.g., high order color bits

28

• Watermarking
• Encrypted data looks random---only 

requestor can tell it isn’t (and decrypt)
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Example

29

• One image has embedded content
• You can’t tell which (shows it’s working)

Goals Analysis

• Client looks innocent (receives images)
• Infranet users & nonusers indistinguishable• Infranet users & nonusers indistinguishable

• Server less so
• Any one image seems innocent
• But same image with different “random bits” in 

each copy is suspicious
• Evasion: never use same image-URL twice

Justify: per individual customized web site• Justify: per-individual customized web site
• Human inspection might detect odd URL usage

• Evasion: use time-varying image (webcam)
• Performance: 1/3 of image bits

30

Upstream (Requests) is Harder

• No “random content bits” that can be fiddled 
to send messages to responderto send messages to responder

• Solution: let browsing pattern itself be the 
message

• Suppose web page has k links.  
• GET on ith link signifies symbol “i” to requestor
• Result: log (k) message bits from link click

31

• Result: log2(k) message bits from link click
• Can be automated
• To prevent censor from seeing message, 

encrypt with responder key 

Goals Analysis

• Deniability: requestor generates standard http 
GETs to allowed web sitesGETs to allowed web sites
• Fact of GETs isn’t itself proof of wrongdoing
• Known rule for translating GETs to message, but 

message is encrypted, so not evidence
• Statistical deniability

• Encrypting message produces “random” string

32

yp g g p g
• Sent via series of “random” GETs
• Problem: normal user browsing not random

• Some links rare
• Conditional dependence of browsing on past browsing
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Performance vs. Deniability

• Middling deniability, poor performance
• Request URL may be (say) 50 characters
• 16 Links/Page (say) means 4 bits
• So need 100 GETs to request one URL!
• And still poor statistical deniability

• Can we enhance deniability?
Y b d i f f th

33

• Yes, by decreasing performance further
• Can we enhance performance?

• Yes, and enhance deniability at same time

Paranoid Alternative

• Settle for one message bit per GET
• Odd/even links on page
• Or generalize to “mod k” for some small k

• User has many link choices for each bit
• Can choose one that is reasonable
• Incorporate error correcting code in case no 

reasonable next link sends correct bit

34

reasonable next link sends correct bit
• Drawback: user must be directly involved in 

sending each message bit
• Very low bandwidth vs time spent

Higher Performance

• Idea: arithmetic coding of requests
• If request i has probability pi, then entropy of 

request distribution is –pi log pi

• Arithmetic coding encodes request i using log pi
bits

• Result: expected request size equals entropy
• Optimal

35

Opt a
• Problem: requestor does not know the 

probability distribution of requests
• Does not have info needed for encoding

Solution: Range Mapping
• Adler-Maggs
• Exploit asymmetric bandwidth
• Responder sends probability distribution to 

requester using easy, downstream path
• Requestor uses this “dictionary” to build 

arithmetic code, send encoded result
• Variation for non-binary

• Our messages aren’t bits, they are clicks
• And server knows different clicks should have 

different probabilities

36
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Toy Example
• Suppose possible requests fewer than links on 

page
• Responder sends dictionary:Responder sends dictionary: 

• “link 1 means http://mit.edu”
• “link 2 means http://stanford.edu”
• Assigns common requests to common GETs

• Requestor GETs link matching intended 
request
O GET d f ll ( ibl h ) t• One GET sends full (possibly huge) request 

• Problem: in general, ∞ possible requests
• Can’t send a dictionary for all

37

Overview

• Routing privacy

• Web Privacy

• Wireless Privacy
Slid J i

38

• Slides Jamie

Our Wireless World

PrivatePhoto1.jpgLink Layer 
Header PrivatePhoto1.jpgLink Layer 
Header

PrivateVideo1.aviLink Layer 
Header PrivateVideo1.aviLink Layer 
Header

Link Layer 
Header Blood pressure: highLink Layer 
Header Blood pressure: high

Link Layer 
Header

Home 
location=(47.28,…

Link Layer 
Header

Home 
location=(47.28,…

Link Layer 
Header

Buddy list: Alice, Bob, 
…

Link Layer 
Header

Buddy list: Alice, Bob, 
…
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Best Security Practices

SSID B b’ N t kU Ali

BootstrapBootstrap

SSID: Bob s Network
Key: 0x2384949…

Discover
802.11 probe Is Bob’s Network here?

802.11 beacon Bob’s Network is here
Discover

802.11 probe Is Bob’s Network here?

802.11 beacon Bob’s Network is here

Username: Alice
Key: 0x348190…

Out-of-band (e.g., password, WiFi
Protected Setup)

802.11 auth Proof that I’m Alice 

802.11 auth Proof that I’m Bob

Authenticate
and Bind

802.11 auth Proof that I’m Alice 

802.11 auth Proof that I’m Bob

Authenticate
and Bind

802.11 header  

802.11 header  
Send Data

802.11 header  

802.11 header  
Send Data

• Confidentiality
• Authenticity
• Integrity

40
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BootstrapBootstrap

SSID Bob’s NetworkSSID Bob’s Network llSSID Bob’s Network l

Privacy Problems Remain

Many exposed bits are (or can be used as) 
identifiers that are linked over time

Many exposed bits are (or can be used as) 
identifiers that are linked over timeSSID: Bob’s Network
Secret: 0x2384949…
SSID: Bob’s Network
Secret: 0x2384949…

Username: Alice
Secret: 0x348190…
Username: Alice
Secret: 0x348190…

SSID: Bob’s Network
Secret: 0x2384949…

Username: Alice
Secret: 0x348190…

Discover
802.11 probe Is Bob’s Network here?

802.11 beacon Bob’s Network is here
Discover

802.11 probe Is Bob’s Network here?

802.11 beacon Bob’s Network is here

Is Bob’s Network here?

Bob’s Network is here

identifiers that are linked over timeidentifiers that are linked over time

802.11 header  
Send Data

802.11 header  
Send Data

MAC addr, seqno, …

802.11 auth Proof that I’m Alice 

802.11 auth Proof that I’m Bob
Authenticate

and Bind
802.11 auth Proof that I’m Alice 

802.11 auth Proof that I’m Bob
Authenticate

and Bind Proof that I’m Bob

MAC addr, seqno, …

• Confidentiality
• Authenticity
• Integrity
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Problem: Long-Term Linking

MAC: 12:34:56:78:90:abMAC: 12:34:56:78:90:ab

Alice’s iPod is here802.11 beacon Alice’s iPod is here802.11 beacon Alice’s iPod is here802.11 beacon Alice’s iPod is here802.11 beacon

MAC: 12:34:56:78:90:abMAC: 12:34:56:78:90:ab

AliceAlice Alice?Alice?

Is Alice’s iPod here?802.11 probe Is Alice’s iPod here?802.11 probe

42

Easy to identify and relate devices over timeEasy to identify and relate devices over time

Alice’s friend?Alice’s friend?

Problem: Long-Term Linking

Linking enables location tracking, user profiling, 
inventorying, relationship profiling, … 
[G t i H tOS ’07 Ji M biS ’07 P M biC ’07[Greenstein, HotOS ’07; Jiang, MobiSys ’07; Pang, MobiCom ’07, 
HotNets ’07]

43

www.bluetoothtracking.org

Home

www.wigle.net

802.11 
header  Is “djw” here? “djw” is here

12:34:56:78:90:a
b

12:34:56:78:90:a

12:34:56:78:90:a
b

12:34:56:78:90:a

Problem: Short-Term Linking

12:34:56:78:90:ab, seqno: 1, …

12:34:56:78:90:ab seqno: 23-9 data streams overlap
Alice -> 

AP
00:00:99:99:11:11

b

Alice -> 
AP

00:00:99:99:11:11

Alice -> 
00:00:99:99:11:11

12:34:56:78:90:a
b

12:34:56:78:90:a
b

Alice -> 
AP

00:00:99:99:11:11

b

Alice -> 
AP

00:00:99:99:11:11

Alice -> 
00:00:99:99:11:11

12:34:56:78:90:a
b

12:34:56:78:90:a
b

12:34:56:78:90:ab, seqno: 2, …

12:34:56:78:90:ab, seqno: 3, …

12:34:56:78:90:ab, seqno: 4, …

00:00:99:99:11:11, seqno: 103, 
…

00:00:99:99:11:11, seqno: 104, 

00:00:99:99:11:11, seqno: 102, 
…

p
each 100 ms, on average

AP
00:00:99:99:11:11

AP
00:00:99:99:11:11

44

…

Easy to isolate distinct packet streamsEasy to isolate distinct packet streams
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Problem: Short-Term Linking

Isolated data streams are more susceptible to side‐
channel analysis on packet sizes and timing
– Exposes keystrokes, VoIP calls, webpages, movies, …

[Liberatore, CCS ‘06; Pang, MobiCom ’07; Saponas, Usenix Security ’07; 
Song, Usenix Security ‘01; Wright, IEEE S&P ‘08; Wright, Usenix Security ‘07]

transmission sizes transmission sizes

300
250
200

100
500

120

VideoVideo

DeviceDevice
fingerprintsfingerprints

45

≈

DFT

transmission sizes transmission sizesVideoVideo
compression compression 

signatures signatures KeystrokeKeystroke
timingstimings

BootstrapBootstrap

SSID Bob’s NetworkSSID Bob’s Network llSSID Bob’s Network l

Fundamental Problem

Many exposed bits are (or can be used as) 
identifiers that are linked over time

Many exposed bits are (or can be used as) 
identifiers that are linked over timeSSID: Bob’s Network

Secret: 0x2384949…
SSID: Bob’s Network
Secret: 0x2384949…

Username: Alice
Secret: 0x348190…
Username: Alice
Secret: 0x348190…

SSID: Bob’s Network
Secret: 0x2384949…

Username: Alice
Secret: 0x348190…

Discover
802.11 probe Is Bob’s Network 

here?
802.11 beacon Bob’s Network is 

here
Discover

802.11 probe Is Bob’s Network 
here?

802.11 beacon Bob’s Network is 
here

identifiers that are linked over timeidentifiers that are linked over time

Is Bob’s Network here?

Bob’s Network is here

46

802.11 auth Proof that I’m Alice 

802.11 auth Proof that I’m Bob

Authenticate
and Bind

802.11 auth Proof that I’m Alice 

802.11 auth Proof that I’m Bob

Authenticate
and Bind

Send DataSend Data

Proof that I’m Bob

MAC addr, seqno, …

MAC addr, seqno, …

Goal: Make All Bits Appear Random

BootstrapBootstrap

SSID B b’ N t k l

DiscoverDiscover

SSID: Bob s Network
Key: 0x2384949…

Username: Alice
Key: 0x348190…

??

47

Authenticate
and Bind

Authenticate
and Bind

Send DataSend Data

Challenge: Filtering without Identifiers

Which packets are mine? Which packets are mine?

48
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Design Requirements

• When A generates Message to B, she sends:
PrivateMessage                 =               F(A, B, Message)

where F has these properties:
– Confidentiality: Only A and B can determine Message.
– Authenticity: B can verify A created PrivateMessage.
– Integrity: B can verify Message not modified.

A→B Header… Unencrypted payloadA→B Header… Unencrypted payload

– Unlinkability: Only A and B can link PrivateMessages
to same sender or receiver.

– Efficiency: B can process PrivateMessages as fast 
as he can receive them.

49

Solution Summary

802.11 WPA

MAC Pseudonyms

Public Key
S t i K

Only
Data

Payload

Only
Data

Payload

Only
Data

Payload

Symmetric Key

SlyFi: Discovery/Binding

SlyFi: Data packets

50

Straw man: MAC Pseudonyms

• Idea: change MAC address periodically
• Per session or when idle [Gruteser ’05, Jiang ‘07]

• Other fields remain (e.g., in 
discovery/binding)
• No mechanism for data authentication/encryption
• Doesn’t hide network names during discovery or

credentials during authenticationg

• Pseudonyms are linkable in the short-term
• Same MAC must be used for each association
• Data streams still vulnerable to side-channel leaks

51

Solution Summary

802.11 WPA

MAC Pseudonyms

Public Key

Only
Data

Payload

Long 
Term

Only
Data

Payload

Only
Data

Payload

Symmetric Key

SlyFi: Discovery/Binding

SlyFi: Data packets

52
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Straw man: Encrypt Everything

BootstrapBootstrap

SSID: Bob’s Network
Key: 0x2384949…

Username: Alice
Key: 0x348190…

DiscoverDiscover

A th ti tA th ti t

Idea: Use bootstrapped keys to encrypt everything

53

Authenticat
e

and Bind

Authenticat
e

and Bind

Send DataSend Data

Straw man: Public Key Protocol

Client Service

Probe “Bob”

KBob

Check signature:

K‐1 b

KAlice
K‐1AliceSign: Slow! (>100ms)Slow! (>100ms)Slow! (>100ms)

Key‐private encryption
(e.g., ElGamal)

Bob

Try to decrypt

K Bob

Based on [Abadi ’04]
54

Straw man: Symmetric Key Protocol

Client Service

Probe “Bob”
Check MAC:

MAC: KAB

KAB

KAB

Try to

KShared1
KShared2
KShared3

…

Slow! (scales w/ # keys)Slow! (scales w/ # keys)Slow! (scales w/ # keys)
Can’t identify the
decryption key in 
the packet or 
else it is linkable

Symmetric encryption
(e.g., AES w/ random IV)

AB Try to
decrypt

with each 
shared key

55

Different symmetric key per potential sende

Solution Summary

802.11 WPA

MAC Pseudonyms

Public Key Protocol

Long
Term

Only
Data

Payload

Only
Data

Payload

Only
Data

Payload

Symmetric Key Protocol

SlyFi: Discovery/Binding

SlyFi: Data packets

56
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SlyFi
• Symmetric key almost works, but tension 

between:
• Unlinkability: can’t expose the identity of the keyUnlinkability: can t expose the identity of the key
• Efficiency: need to identify the key to avoid trying all keys

• Idea: Identify the key in an unlinkable way

• Approach:
• Sender A and receiver B agree on tokens: T T T

AB AB AB
• Sender A and receiver B agree on tokens:  T1 , T2 , T3 , …

• A attaches Ti to encrypted packet for B

57

AB

SlyFi

Client ServiceRequired properties:Required properties:
AB AB

Probe “Bob”
Check MAC:

MAC: KAB

KAB

KAB

KAB

– Third parties can not link Ti and Tj if i ≠ j
– A doesn’t reuse Ti 
– A and B can compute Ti independently

– Third parties can not link Ti and Tj if i ≠ j
– A doesn’t reuse Ti 
– A and B can compute Ti independently

AB AB

AB

AB

Main challenge:
Sender and receiver must synchronize i

Main challenge:
Sender and receiver must synchronize i

Symmetric encryption
(e.g., AES w/ random IV)

AB

Lookup Ti in a
table to get KAB

Ti 
ABABTi 
AB

AB

58

Ti =  AESK   (i)Ti =  AESK   (i)ABAB
ABABTi =  AESK   (i)Ti =  AESK   (i)ABAB

ABAB Ti =  AESK   (i)AB
ABTi =  AESK   (i)AB

AB

yy

SlyFi: Data Transport

• Data messages:
• Only sent over established connectionsOnly sent over established connections
 Expect messages to be delivered
 Use implicit transmission number to synchronize i

Ti =  AESK   (i)             where i = transmission #Ti =  AESK   (i)             where i = transmission #
ABAB

Ti =  AESK   (i)             where i = transmission #
AB

AB

59

Ti    
AB

Ti+1
AB

Ti +2
AB

Ti +3
AB

SlyFi: Data Transport

• Data messages:
• Only sent over established connectionsOnly sent over established connections
 Expect messages to be delivered
 Use implicit transmission number to synchronize i

Ti =  AESK   (i)             where i = transmission #Ti =  AESK   (i)             where i = transmission #
ABAB

Ti =  AESK   (i)             where i = transmission #
AB

• On receipt of Ti , B computes next expected: Ti+1

AB

AB AB

60

On receipt of Ti , B computes next expected: Ti+1

• Handling message loss:
– On receipt of Ti save Ti+1, … , Ti+k in table
– Tolerates k consecutive losses (k=50 is enough)
– No loss  compute one token per reception

AB ABAB
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SlyFi: Discovery/Binding

• Discovery & binding messages:
• Often sent when other party is not presentOften sent when other party is not present
 Can’t expect most messages to be delivered
 Can’t rely on transmission reception to synchronize i

Is Bob’s Network here?Ti    
AB

I B b’ N t k h ?T
AB

..

Nope.

N

61

i = ?

Is Bob’s Network here?Ti +1

Is Bob’s Network here?Ti +3
AB

Is Bob’s Network here?Ti +2
AB

..
…

...

Nope.

Nope.

SlyFi: Discovery/Binding

• Discovery & binding messages:
• Infrequent: only sent when trying to associatey y g
• Narrow interface: single application, few side-channels
 Linkability at short timescales is usually OK
 Use loosely synchronized time to synchronize i

Ti =  AESK   (i)        where i = current time/5 minTi =  AESK   (i)        where i = current time/5 min
ABAB

Ti =  AESK   (i)        where i = current time/5 min
AB

AB

62

802.11 probe
802.11 beacon

802.11 auth
802.11 auth

Ti    
AB

Ti    
AB
Ti    

BA

Ti    
BA

SlyFi: Discovery/Binding

• Discovery & binding messages:
• Infrequent: only sent when trying to associatey y g
• Narrow interface: single application, few side-channels
 Linkability at short timescales is usually OK
 Use loosely synchronized time to synchronize i

Ti =  AESK   (i)        where i = current time/5 minTi =  AESK   (i)        where i = current time/5 min
ABAB

Ti =  AESK   (i)        where i = current time/5 min
AB

AB

63

• At the start of time interval i compute Ti

• Handling clock skew:
– Receiver B saves Ti-s, … , Ti+s in table
– Tolerates clock skew of 5s minutes

ABAB

AB

Solution Summary

802.11 WPA

MAC Pseudonyms

Public Key

Long
Term

Only
Data

Payload

Only
Data

Payload

Only
Data

Payload

y
Symmetric Key

SlyFi: Discovery/Binding

SlyFi: Data packets

Long
Term

64
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Next Lecture…
• No next lecture 
• Exam

• Much like the midterm
• 1.5hrs on Dec 1st

• Mostly on 2nd half of semester but with some 
coverage of 1st half

• Project
• 6-8pg writeup – due Dec 5th

• 10min presentation – on Dec 2nd or 3rd

• Incorporate feedback into final writeup

65 66

Overview

• P2P Privacy

67

Freenet
• Addition goals to file location:

• Provide publisher anonymity, security 
• Resistant to attacks – a third party shouldn’t be able toResistant to attacks a third party shouldn t be able to 

deny the access to a particular file (data item, object), 
even if it compromises a large fraction of machines

• Files are stored according to associated key
• Core idea: try to cluster information about similar keys

• Messages
• Random 64bit ID used for loop detection

68

p
• TTL

• TTL 1 are forwarded with finite probablity
• Helps anonymity

• Depth counter 
• Opposite of TTL – incremented with each hop
• Depth counter initialized to small random value
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Data Structure

• Each node maintains a common stack
• id – file identifier
• next_hop – another node that store the file id
• file – file identified by id being stored on the local 

node 
• Forwarding: 

• Each message contains the file id it is referring to
• If file id stored locally, then stop

• Forwards data back to upstream requestor

id   next_hop     file

…
…
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• Requestor adds file to cache, adds entry in routing 
table

• If not, search for the “closest” id in the stack, and 
forward the message to the corresponding 
next_hop

Query Example

2

query(10)

4  n1  f4
12  n2  f12
5  n3

9  n3  f9

3  n1  f3
14  n4  f14

14  n5  f14
13  n2  f13
3  n6

n1 n2

n3

n4

4  n1  f4
10  n5  f10
8  n6

n5

1

2

4

4’

5
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Note: doesn’t show file caching on the 
reverse path 

5  n3

Freenet Requests
• Any node forwarding reply may change the source of the 

reply (to itself or any other node)
• Helps anonymity

• Each query is associated a TTL that is decremented each 
time the query message is forwarded; to obscure distance 
to originator:
• TTL can be initiated to a random value within some bounds
• When TTL=1, the query is forwarded with a finite probability

• Each node maintains the state for all outstanding queries 
that have traversed it help to avoid cycles
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that have traversed it  help to avoid cycles
• If data is not found, failure is reported back

• Requestor then tries next closest match in routing table

Freenet Request

C
Data Request
Data Reply
Request Failed

1

A B

D

q

2
3

12

6
4

11 10
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E
F

7
4 10

9
5

8
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Freenet Search Features

• Nodes tend to specialize in searching for 
similar keys over time
• Gets queries from other nodes for similar keys

• Nodes store similar keys over time
• Caching of files as a result of successful 

queries
Similarity of keys does not reflect similarity
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• Similarity of keys does not reflect similarity 
of files

• Routing does not reflect network topology

Freenet File Creation
• Key for file generated and searched  helps 

identify collision
N t f d (“All l ”) lt i di t• Not found (“All clear”) result indicates success

• Source of insert message can be change by any 
forwarding node

• Creation mechanism adds files/info to locations 
with similar keys

• New nodes are discovered through file creation
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• New nodes are discovered through file creation
• Erroneous/malicious inserts propagate original file 

further

Cache Management

• LRU Cache of files
• Files are not guaranteed to live foreverg

• Files “fade away” as fewer requests are made 
for them

• File contents can be encrypted with original 
text names as key

C h d t k ith i i l
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• Cache owners do not know either original name 
or contents  cannot be held responsible

Freenet Naming

• Freenet deals with keys
• But humans need names
• Keys are flat  would like structure as well

• Could have files that store keys for other 
files
• File /text/philiosophy could store keys for files in 

that directory how to update this file though?

76

that directory  how to update this file though?
• Search engine  undesirable centralized 

solution
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Freenet Naming - Indirect files
• Normal files stored using content-hash key

• Prevents tampering, enables versioning, etc.
• Indirect files stored using name based key• Indirect files stored using name-based key

• Indirect files store keys for normal files
• Inserted at same time as normal file

• Has same update problems as directory files
• Updates handled by signing indirect file with 

public/private key

77

• Collisions for insert of new indirect file handled specially 
 check to ensure same key used for signing

• Allows for files to be split into multiple smaller 
parts

78

How does Tor work? How does Tor work?
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How does Tor work? Building a circuit

Create c2
E(gx2)

Create c1, 
E(gx1)

Created c1, 
gy1, H(K1)

Relay c1
(Extend, OR2, 

E(g )
Created c2, 
gy2, H(K2)

Relay 
c1(Extended, 
gy2, H(K2)

( , 2,
E(gx1))
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Fetching a web page

Relay c2 (Begin Relay c

Relay c1 (Begin 
<Bob>)

y 2 ( g
<Bob>)

TCP Handshake

Relay c2
(Connected)Relay c1

(Connected)

Last onion router should get the IP address of Bob’s 
website to protect Alice’s anonymity.
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