

Catnap Why so Many? · Technologies have Diverse application requirements different Energy consumption · Signal penetration Range · Frequency use Cost Bandwidth · Mobility · Market size Cost · Age, integration Throughput (Mbps) Diverse UWB deployments » Licensed versus WiFi WiMAX unlicensed » Provisioned or BT

Zigbee

100m

1Km

Range

10km

100km

Overview

 History Technology

Cellular Overview

· Bartendr: energy-aware scheduling • Energy efficiency in sensor nets

Some History...

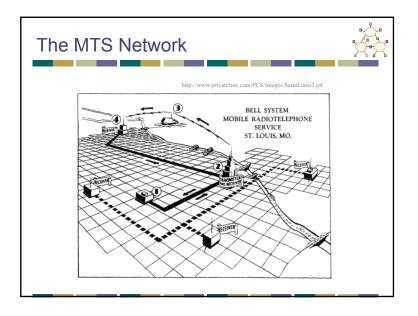
- Wireless telegraph invented by Guglielmo Marconi in 1896
- Tesla credited with first radio communication in 1893
- First telegraphic signal traveled across the Atlantic ocean in 1901
- Used analog signals to transmit alphanumeric characters

Mobile phones

- 2-way 2-party communication using digital transmission technology
- In 2002 the number of mobile phones exceeded that of land lines
- More than 1 billion mobile phones!
- The only telecommunications solution in developing regions
- How did it all start?

The Cellular Idea

- In December 1947 Donald H. Ring outlined the idea in a Bell labs memo
- Split an area into cells with their own low power towers
- · Each cell would use its own frequency
- Did not take off due to "extreme-at-the-time" processing needs
 - · Handoff for thousands of users
 - Rapid switching infeasible maintain call while changing frequency


The origin of mobile phone

- America's mobile phone age started in 1946 with MTS – weighing 40 Kg!
- First mobile phones very bulky, expensive and hardly portable
- · Operator assisted with 250 maximum users

... the Remaining Component

- In December 1947 the transistor was invented by William Shockley, John Bardeen, and Walter Brattain
- Why no portable phones at that time?
- A mobile phone needs to send a signal not just receive and amplify
- The energy required for a mobile phone transmission still too high for the high power/high tower approach – required a car battery

... and the Regulatory Bodies

The FCC commissioner Robert E. Lee said that mobile phones were a status symbol and worried that every family might someday believe that its car had to have one.

Lee called this a case of people "frivolously using spectrum" simply because they could afford to.

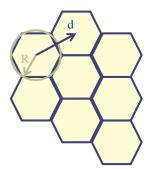
From The Cell-Phone Revolution, AmericanHeritage.com

Overview

- Cellular Overview
 - History
 - Technology
- Bartendr: energy-aware scheduling
- Energy efficiency in sensor nets
- Catnap

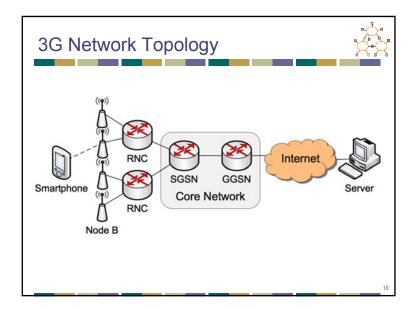
14

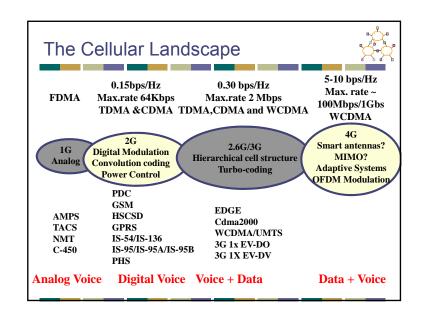
The Advent of Cellular Networks

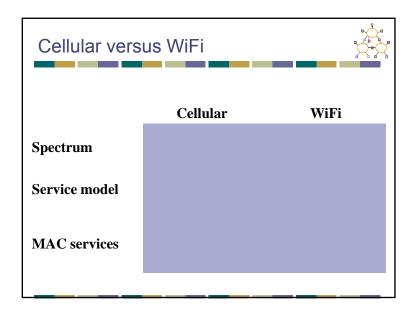


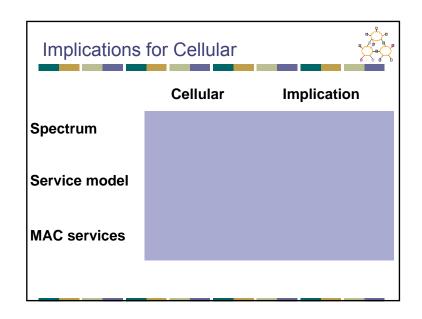
- Mobile radio telephone system was based on:
 - High power transmitter/receivers
 - Could support about 25 channels
 - in a radius of 80 Km
- · To increase network capacity:
 - Multiple low-power transmitters (100W or less)
 - Small transmission radius -> area split in cells
 - · Each cell with its own frequencies and base station
 - · Adjacent cells use different frequencies
 - The same frequency can be reused at sufficient distance

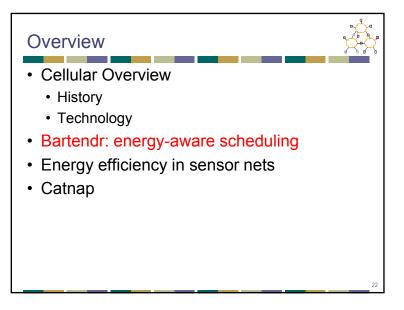
The Hexagonal Pattern


- A hexagon pattern can provide equidistant access to neighboring cell towers
- $d = \sqrt{3}R$
- In practice, variations from ideal due to topological reasons

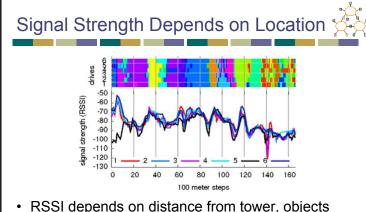



Frequency reuse



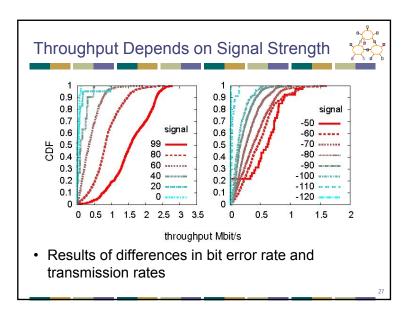

- Each cell features one base transceiver
- Through power control cover the cell area while limiting the power leaking to other cofrequency cells
- Frequency reuse not possible for adjacent towers!
- The number of frequency bands assigned to a cell dependent on its traffic

Key Observations and Ideas


- Signal strength for cellular varies widely depending on location
- Energy consumption is strongly correlated with signal strength
 - High pathloss -> radio uses higher power
 - Weak signal -> lower transmit rate -> longer transmission times for given number of bits
- · Idea driving Bartendr
 - Try to communicate when signal is strong
 - · Defer appropriate transmissions if needed

Summary of Contributions

- Observed relationship between signal strength
 - · Power consumption
 - Throughput
- Prediction of signal strength based on history
- · Scheduling to minimize energy use
- Evaluation based on both measurements and simulation


23

- RSSI depends on distance from tower, objects blocking LoS
- · Results are fairly consistent across multiple trips

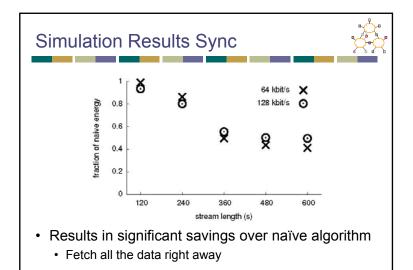
П

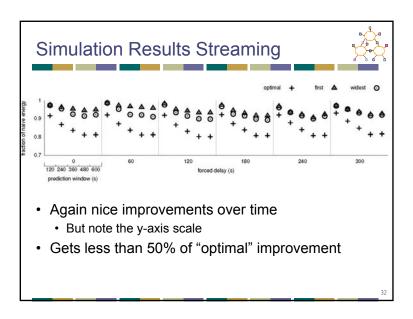
Choice of Applications

- Idea is to delay transmission until signal strength is good.
- Interactive applications are generally not suitable:
 - VoIP, web browsing, ...
- Some applications are "delay tolerant"
 - E.g. "sync" style apps: e-mail, facebook, ...
- Some applications have predictable future data needs
 - · E.g. video streaming

28

Signal Prediction


- Goal is to infer location in a track so future signal strengths can be derived
 - Phone stores tracks of common trips
 - Must also figure out direction
- Use current signal strength to find location
- Can also use list of basestations to differentiate between multiple locations
 - Learn from handoffs
- Decided not to use GPS (power hungry)

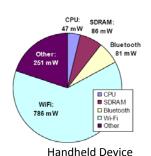

Scheduling Bartendr

- Sync sleeps until predicted signal strength reaches a certain threshold
 - · First: wait until exceeds for the first time
 - · Widest: wait until it exceeds for longest time
- Streaming breaks stream into N frames that are scheduled in M time slots
 - Goal is to minimize total energy
 - Translates into a dynamic programming problem

30

Discussion

- Shows relationship between power consumption and received signal strength
- Reduces energy consumption by scheduling transmissions for certain apps
- Does not require infrastructure support
- Somewhat artificial problem
- Fairly strong assumptions on driver behavior


Overview

- Cellular Overview
 - History
 - Technology
- Bartendr: energy-aware scheduling
- Energy efficiency in sensor nets
 - Slides Dana
- Catnap

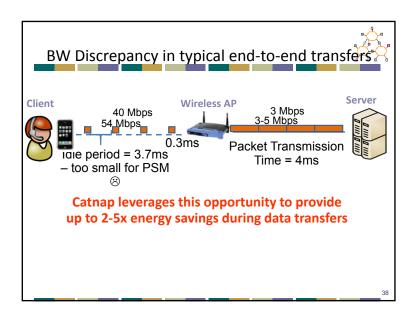
Understanding Energy Consumption

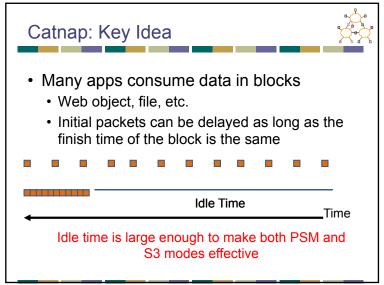
For laptops, Wifi consumes around 10% of the total power

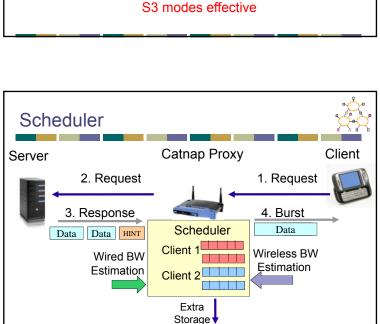
[CoolSpots, MobiSys 2006]

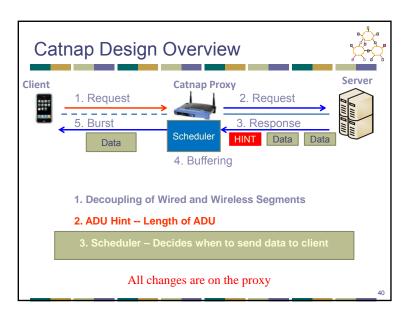
Need to consider device characteristics

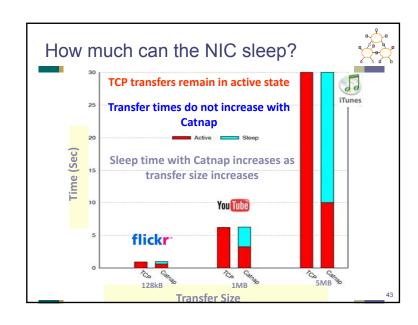
Energy Saving Options

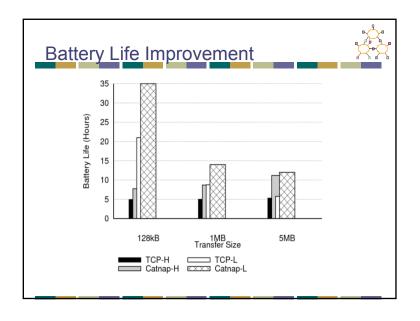

- Wifi Power Save Mode (802.11 PSM)
 - · Turns off the wireless card
 - Takes around 50ms
- Deeper Sleep Modes
 - E.g., Suspend to RAM (S3), Hibernation
 - Whole system goes into sleep mode
 - Takes around 10-15 sec

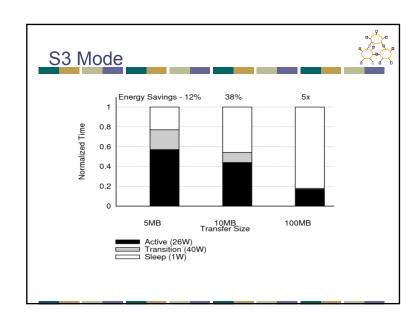

Range of options but need to consider cost of using a particular sleep mode


Can we use these sleep modes?


- 802.11 PSM
 - Yes, but only when no application is using the wireless interface
 - Can hurt application performance, e.g. VoIP
 - "Enter sleep mode if no network activity for X amount of time"
- S3 Mode
 - Cannot use it while applications are running
 Sleep modes not useful during data transfers


Key Points: Decoupling, Hint from Server, Scheduling




Scheduling

- Decides when to schedule transmission
- · How much can you sleep?
 - (Finish Time Burst Time Cost)
- Calculating Finish Time
 - · Depends on the wired available bandwidth
 - · Important to calculate it properly
- Burst Time
 - Depends on wireless available bandwidth
 - Precision less important than wired bandwidth Adaptation is important!

Discussion

- Catnap with unmodified Clients and Servers
 - Web and Email applications
- · Objects smaller than 128kB
 - Batch mode: multiple small transfers scheduled together
 - · Slight increase in transfer times
- · Faster transmissions on wireless
 - "UDP-Blast" can provide 20% more sleep time compared to TCP

Announcements

- Final is two weeks from today (Dec 3)
 - In class
 - Similar to midterm but emphasis on material from second half of the semester
- Project presentations are on Dec 5
 - 15 minute talks + some time for questions
 - · Will announce room and time
- Project reports due on Dec 13 at noon

, |