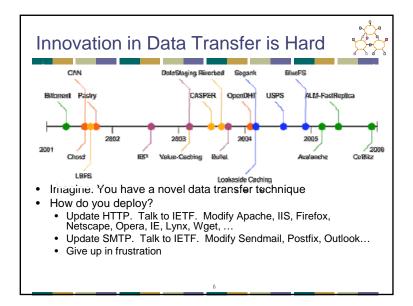


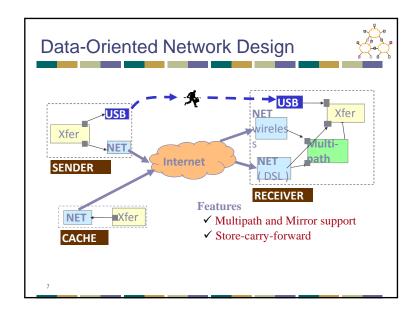
• Required:

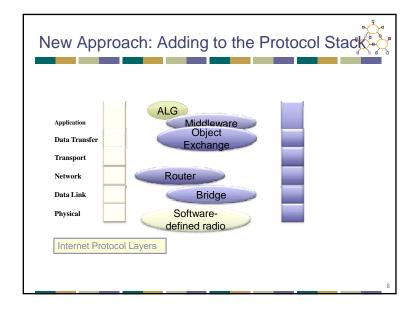
Readings

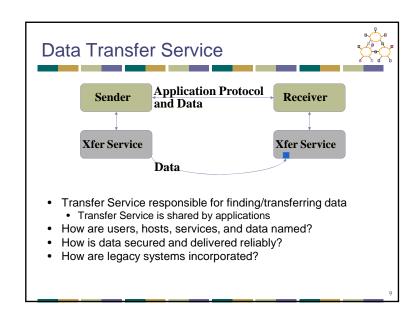
- CCN
- · 2 sections of DONA
- 2 sections of RE
- Optional reading:
 - DOT

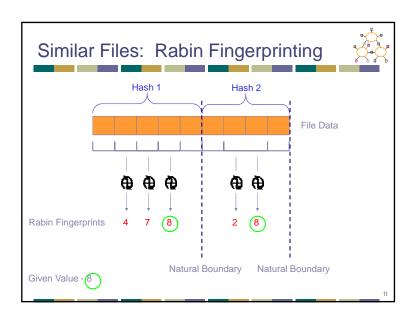
Outline • DOT • DONA • CCN • RE


Data-Oriented Networking Overview



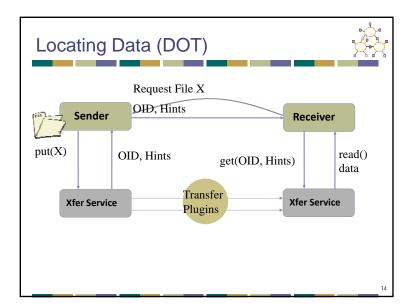

- In the beginning...
 - First applications strictly focused on host-to-host interprocess communication:
 - Remote login, file transfer, ...
 - Internet was built around this host-to-host model.
 - Architecture is well-suited for communication between pairs of stationary hosts.
- ... while today
 - Vast majority of Internet usage is data retrieval and service access
 - Users care about the content and are oblivious to location.
 They are often oblivious as to delivery time:
 - Fetching headlines from CNN, videos from YouTube, TV from Tivo
 - · Accessing a bank account at "www.bank.com".


To the beginning...


- What if you could re-architect the way "bulk" data transfer applications worked
 - HTTP
 - FTP
 - Email
 - etc.
- ... knowing what we know now?

Naming Data (DOT) Application defined names are not portable Use content-naming for globally unique names Objects represented by an OID Foo.tx Cryptographic Hash Objects are further sub-divided into "chunks" File Desc1 Desc2 Desc3 Secure and scalable!

Naming Data (DOT)


- All objects are named based only on their data
- Objects are divided into chunks based only on their data
- Object "A" is named the same
 - Regardless of who sends it
 - Regardless of what application deals with it
- Similar parts of different objects likely to be named the same
 - e.g., PPT slides v1, PPT slides v1 + extra slides
 - First chunks of these objects are same

2

Self-certifying Names

- A piece of data comes with a public key and a signature.
- Client can verify the data did come from the principal by
 - Checking the public key hashes into P, and
 - Validating that the signature corresponds to the public key.
- Challenge is to resolve the flat names into a location.

Outline

- DOT
- DONA
 - Slides David Naylor
- CCN
- RE

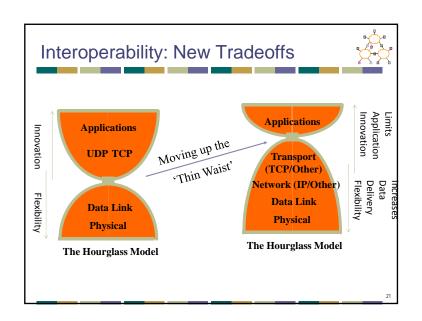
Naming Data (DONA)

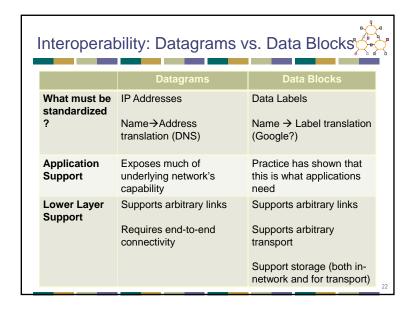
- Names organized around principals.
- Names are of the form P: L.
 - P is cryptographic hash of principal's public key, and
 - L is a unique label chosen by the principal.
- Granularity of naming left up to principals.
- · Names are "flat".

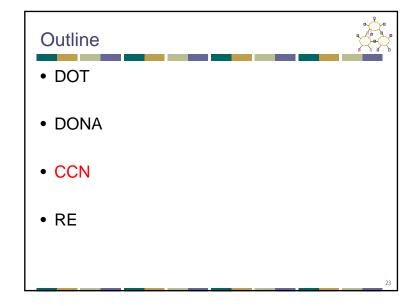
Name Resolution (DONA)

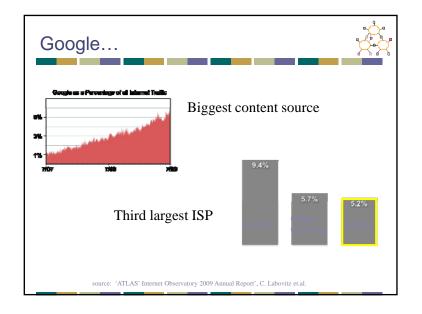
- Resolution infrastructure consists of Resolution Handlers.
 - Each domain will have one logical RH.
- Two primitives FIND(P:L) and REGISTER(P:L).
 - FIND(P:L) locates the object named P:L.
 - REGISTER messages set up the state necessary for the RHs to route FINDs effectively.

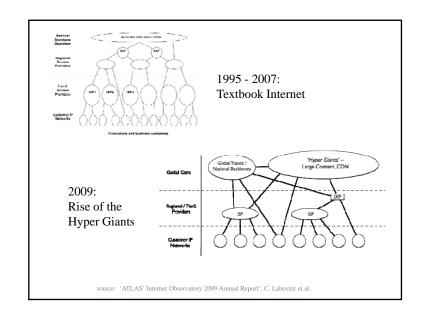
Establishing REGISTER state

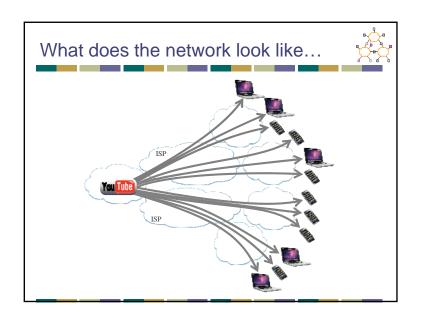

- Any machine authorized to serve a datum or service with name P:L sends a REGISTER(P:L) to its firsthop RH
- RHs maintain a registration table that maps a name to both next-hop RH and distance (in some metric)
- REGISTERs are forwarded according to interdomain policies.
 - REGISTERs from customers to both peers and providers.
 - REGISTERs from peers optionally to providers/peers.

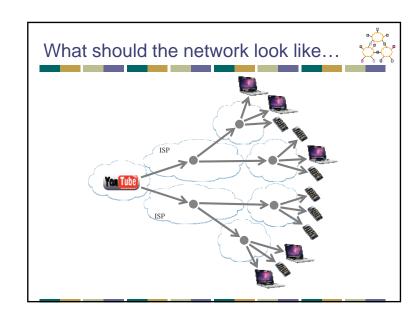

Forwarding FIND(P:L)

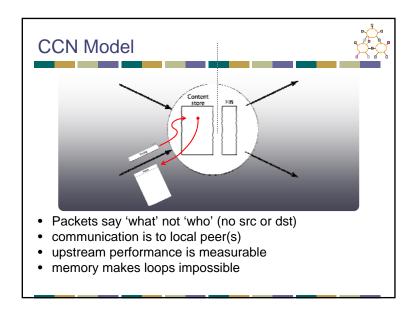



- When FIND(P:L) arrives to a RH:
 - If there's an entry in the registration table, the FIND is sent to the next-hop RH.
 - If there's no entry, the RH forwards the FIND towards to its provider.
- In case of multiple equal choices, the RH uses its local policy to choose among them.


9



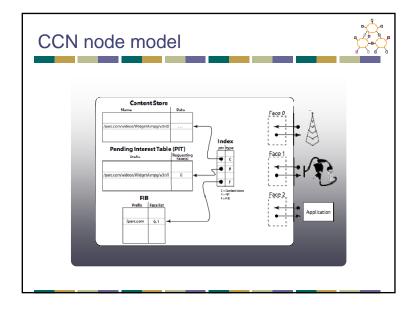


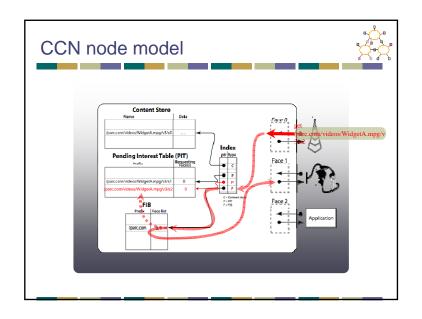


Context Awareness?

- · Like IP, CCN imposes no semantics on names.
- 'Meaning' comes from application, institution and global conventions:

/parc.com/people/van/presentations/CCN
/parc.com/people/van/calendar/freeTimeForMeeting
/thisRoom/projector
/thisMeeting/documents
/nearBy/available/parking
/thisHouse/demandReduction/2KW


/nytimes.com/web/frontPage/v20100415/s0/0x3fdc96a4... signature 0x1b048347 key nytimes.com/web/george/desktop public key Signed by nytimes.com/web Signed by nytimes.com/web Signed by nytimes.com • Per-packet signatures using public key


• Packet also contain link to public key

Names Route Interests

- FIB lookups are longest match (like IP prefix lookups) which helps guarantee log(n) state scaling for globally accessible data.
- Although CCN names are longer than IP identifiers, their explicit structure allows lookups as efficient as IP's.
- Since nothing can loop, state can be approximate (e.g., bloom filters).

- One Interest pkt → one data packet
- All xfers are done hop-by-hop so no need for congestion control
- Sequence numbers are part of the name space

What about connections/VoIP?

- Key challenge rendezvous
- Need to support requesting ability to request content that has not yet been published
- E.g., route request to potential publishers, and have them create the desired content in response

Callee (Bob) Caller (Alice) < registers a desire to see interests asking for content beginning with Signaling Path /domain/sip/bob/invite> /domain/sip/bob/invite/E_{pkE}(sk)/E_{sk}(SIP INVITE message) Name: /domain/sip/bob/invite/E_{pkB}(sk)/E_{ek}(SIP INVITE message) Signature Info: <metadata>, <signature> Content: E_{sk}(SIP response message) Interest: /domain/bob/call-id/rtp/seq-no Data: /domain/bob/call-id/rtp/seq-no Signature Info: <metadata>, <signature> Content: SKIP packet (encrypted audio) Interest: /domain/alice/call-id/rtp/seq-no Data: Name: /domain/alice/call-id/rtp/seq-no Signature Info: <metadata>, <signature> SRTP packet (encrypted audio)

Outline

- DOT
- DONA
- CCN
- RE
 - See slides Favonia

"But ...

- "this doesn't handle conversations or realtime.
 - Yes it does see ReArch VoCCN paper.
- "this is just Google.
 - This is IP-for-content. We don't search for data, we route to it.
- "this will never scale.
 - Hierarchically structured names give same log(n) scaling as IP but CCN tables can be much smaller since multi-source model allows inexact state (e.g., Bloom filter).