I 15-744: Computer Networking I

L-16 P2P

By 8
W fp R s
o

£y d y

Overview

e P2P Lookup
* Overview
* Napster
» Gnutella

* Routed Lookups — Chord

e Comparison of DHTs

* 13

,
At
SN

Peer-to-Peer Networks X A*j g

» Typically each member stores/provides access to
content
 Basically a replication system for files

¢ Always a tradeoff between possible location of files and
searching difficulty

« Peer-to-peer allow files to be anywhere - searching is
the challenge

¢ Dynamic member list makes it more difficult
» What other systems have similar goals?
¢ Routing, DNS

The Lookup Problem

N,

Key="title” _/Internet
Value=MP3 data... \_—"
Publisher

— Client
Lookup(“title™)




. o jﬁ ; 8
iloodeoﬁgierles (Enitella) - Syt
Nl Nz‘" Lookup(“title™)
-~ — N3 e . .
/ - — _~Client
PUbliShEr@N4 /

Key="title”
Value=MP3 data... - ’

/

Ng —

Robust, but worst case O(N) messages per lookup

: A,
EentraIEed_ Lookui (lapster)_ - o
SetLoc(“title”, N4) Nl N2
— N3 .
. Client
Publisher@N,, DB™ | okupceite”)
Key="title”
Value=MP3 data... N
Ne '
Simple, but O(N) state and a single point of failure
By 2 A
) AN,
Routed Queries (Chord, etc.) IS8,
N, N, 7
o N3 Client
Publisher——— N, Lookup(“title”)
Key="title” |
Value=MP3 data... N Y
N N, Ng
N9

Centralized: Napster

* Simple centralized scheme -
motivated by ability to sell/control
* How to find a file:
» On startup, client contacts central server
and reports list of files

* Query the index system - return a
machine that stores the required file

« |deally this is the closest/least-loaded
machine

* Fetch the file directly from peer




Centralized: Napster il

» Advantages:
» Simple
» Easy to implement sophisticated search
engines on top of the index system

» Disadvantages:
* Robustness, scalability
» Easy to sue!

NS
e

FIoodmg OId Gnutella oS

» On startup, cllent contacts any servent
(server + client) in network
» Servent interconnection used to forward control
(queries, hits, etc)
* ldea: broadcast the request

* How to find a file:
» Send request to all neighbors
* Neighbors recursively forward the request

« Eventually a machine that has the file receives
the request, and it sends back the answer

 Transfers are done with HTTP between peers

o
LN

o’y

FIoodlng Old Gnutella ey

. Advantages.
* Totally decentralized, highly robust

» Disadvantages:

* Not scalable; the entire network can be
swamped with request (to alleviate this
problem, each request has a TTL)

» Especially hard on slow clients

At some point broadcast traffic on Gnutella
exceeded 56kbps — what happened?

* Modem users were effectively cut off!

a A
DO
Y

/
B

FIoodlng Old Gnutella Detalls

. Basm message header
* Unique ID, TTL, Hops

* Message types
* Ping — probes network for other servents

» Pong - response to ping, contains IP addr, # of files, #
of Kbytes shared

* Query — search criteria + speed requirement of servent

» QueryHit — successful response to Query, contains
addr + port to transfer from, speed of servent, number
of hits, hit results, servent ID

» Push —request to servent ID to initiate connection,
used to traverse firewalls

* Ping, Queries are flooded

* QueryHit, Pong, Push reverse path of previous
message

o a




L]

?
. . A% . . AR g
Flooding: Old Gnutella Example jey Flooding: Gnutella, Kazaa jSo
« Modifies the Gnutella protocol into two-level hierarchy
, . « Hybrid of Gnutell d Napst
Assume: m1’s neighbors are m2 and m3; . Sup;rrr]'ogesn” ela and Tapster
m3's nelghbors are m4 and ms;... « Nodes that have better connection to Internet
« Act as temporary indexing servers for other nodes
« Help improve the stability of the network
i + Standard nodes
= « Connect to supernodes and report list of files
\ ’ < Allows slower nodes to participate
‘~ » Search
« Broadcast (Gnutella-style) search across supernodes
« Disadvantages
« Kept a centralized registration - allowed for law suits ®
13 14
: P : ) A e
Overview [Sue) Routing: Structured Approaches Jose,
[ ]
P2P LOOKUp » Goal: make sure that an item (file) identified is always
* Overview found in a reasonable # of steps
* Napster . Ab_stract_lor_l: a distributed hash-table (DHT) data structure
« insert(id, item);
* Gnutella - item = query(id);
« Note: item can be anything: a data object, document, file, pointer
to afile...
» Proposals

* Routed Lookups — Chord
* CAN (ICIR/Berkeley)

* Chord (MIT/Berkeley)
e Comparison of DHTs * Pastry (Rice)
« Tapestry (Berkeley)

* 13

15




Routing: Chord "

» Associate to each node and item a unique id
in an uni-dimensional space

 Properties

* Routing table size O(log(N)) , where N is the
total number of nodes

» Guarantees that a file is found in O(log(N))
steps

17

Aside: Hashing e

¢ Advantages
* Let nodes be numbered 1..m
* Client uses a good hash function to map a URL to 1..m
e Say hash (url) = x, so, client fetches content from node
X
* No duplication — not being fault tolerant.
* One hop access
e Any problems?
* What happens if a node goes down?

* What happens if a node comes back up?
¢ What if different nodes have different views?

o’y

Robust hashing
¢ Let 90 documents, node 1..9, node 10 which was
dead is alive again

* % of documents in the wrong node?
« 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,
82-90
« Disruption coefficient = %2
» Unacceptable, use consistent hashing — idea behind
Akamai!

@ b d
—

By A
QAR s
o

%

19

2
oy

Consistent Hash o3

» “view” = subset of all hash buckets that are
visible
» Desired features
« Balanced — in any one view, load is equal
across buckets

* Smoothness - little impact on hash bucket
contents when buckets are added/removed

» Spread — small set of hash buckets that may
hold an object regardless of views

» Load — across all views # of objects assigned to
hash bucket is small

/
\‘/L

]
b




Consistent Hash — Example e sy
» Construction
 Assign each of C hash buckets to - - .

random points on mod 2" circle,
where, hash key size = n.

* Map object to random position on
circle

» Hash of object = closest ° e °
clockwise bucket
Smoothness - addition of bucket does not cause much
movement between existing buckets
Spread & Load - small set of buckets that lie near object

Balance - no bucket is responsible for large number of
objects

Bucket

21

Routlng Chord Ba5|c Lookup X

N105

“N90 has K80” N32

\ N60

K80 N9O

‘{ N210 | “Where is key 807"

At
SN

Routlng Flnger table Faster Lookups‘

-\

o
5N,
.(

23

Routlng Chord Summary X

* Assume |dent|f|er space is 0...2m
» Each node maintains

* Finger table

e Entry i in the finger table of n is the first node that
succeeds or equals n + 2

* Predecessor node

» An item identified by id is stored on the
successor node of id




Routrng Chord Example

¢ Assume an

identifier space e

0.8 /

* Node n1:(1)
joins>all entries e
In its finger table |
are initialized to
itself \\5’

Succ. Table

i id+2'|succ

0
1
2

25

Routrng Chord Example

« Node n2:(3) joins

o 8

o AR,

aYe)
— §

Succ. Table

id+2'|succ

Routrng Chord Example

* Nodes n3:(0), n4:(6)
join

Succ. Table

i id+2'|succ

|

0
1
2

Succ. Table

id+2'|succ

N R ol
w
o

Succ. Table

id+2'|succ

0
1
2

27

\ 0
/ \ 2
“ \\ ) /""“ Succ. Table
\{) 3/ )/ i |id+2'|succ
. A,
Routrng._Chord E)gmples - ISP

* Nodes: nl:(1), n2(3),

n3(0), n4(6)
* Items: f1:(7), f2: (2)

Succ. Table

id+2'| succ

0
1
2

,,/ .

Succ. Table  |iems
i |id+2'|succ
o 1|1
1
2
N Succ. Table  tems
10 i lid+2!|succ| [ 1]
\ 0 2
\ 1 3| 6
\ 25 6
26&
/ Succ. Table
/ i id+2'
i id+2'|succ
3)/ o 36
e 1 4|6
2/ 6|6




Routmg Query

. Upon receiving a
query for item id, a
node

» Check whether stores
the item locally

* If not, forwards the
query to the largest
node in its successor /7
table that does not :
exceed id

2N

Succ. Table
i [id+2'

succ

\<5

Succ. Table  iems

[

What can DHTs do for us? 3

+\

o
LN

. Dlstrlbuted object Iookup

Y

o’y

Overview

suce (7 » Based on object ID
/1240 « De-centralized file systems
o
L -
P ey e « CFS, PAST, Ivy
e A\ '2"“2' e [ « Application Layer Multicast
2 » Scribe, Bayeux, Splitstream
» Databases
Succ. Table ° PIER
3/\// ioidJ;Z' suecc
4 14 6
— 2l 6|6
By A .\9/.
q /{) X H q /)- L
IS¥; Comparison S,

* P2P Lookup Overview

» Centralized/Flooded Lookups

* Routed Lookups — Chord

» Comparison of DHTs
 Slides Michael Stroucken
e I3

. Many proposals for DHTs

Tapestry (UCB)
« Pastry (MSR, Rice)
« Chord (MIT, UCB)
« CAN (UCB, ICSI)
« Viceroy (Technion)

performance?

31

-- Symphony (Stanford) -
-- Tangle (UCB)

-- SkipNet (MSR,UW)

-- Bamboo (UCB)

-- Hieras (U.Cinn)

« Kademlia (NYU) -- Sprout (Stanford)
« Kelips (Cornell) -- Calot (Rochester)
« Koorde (MIT) -- IXTA’s (Sun)

- 1hop (MIT)

-- conChord (MIT)
-- Apocrypha (Stanford)

-- LAND (Hebrew Univ.)
-- ODRI (TexasA&M)

« What are the right design choices? Effect on




Deconstructing DHTs

Two observations:

1. Common approach

. N nodes; each labeled with a virtual identifier (128 bits)
«  define “distance” function on the identifiers
«  routing works to reduce the distance to the destination

2. DHTs differ primarily in their definition of “distance”
¢ typically derived from (loose) notion of a routing geometry

33

N4
'
Y

o’y

o
LN

DHT Routing Geometries

« Geometries:
* Tree (Plaxton, Tapestry)
* Ring (Chord)
» Hypercube (CAN)
* XOR (Kademlia)
« Hybrid (Pastry)

« What is the impact of geometry on routing?

Tree (Plaxton, Tapestry)

000 Q01 OZ}O 011 100 101 110 111

Geometry
¢ nodes are leaves in a binary tree
¢ distance = height of the smallest common subtree
¢ logN neighbors in subtrees at distance 1,2,...,logN

35

Hypercube (CAN) o f

€

100

000~

Geometry
« nodes are the corners of a hypercube
« distance = #matching bits in the IDs of two nodes
« logN neighbors per node; each at distance=1 away




A
P

o
Yy

Ring (Chord)

110

Geometry 100
* nodes are points on a ring
« distance = numeric distance between two node IDs
¢ logN neighbors exponentially spaced over 0...N

37

r/+§*,
o

Hybrid (Pastry) )

Geometry:
e combination of a tree and ring
* two distance metrics

« default routing uses tree; fallback to ring under failures
* neighbors picked as on the tree

e

o’y

$
B

XOR (Kademlia) ey

00 +—01 «—10 «— 11

0l «—00 «—11 «—— 10

Geometry:
« distance(A,B) = AXOR B
« logN neighbors per node spaced exponentially

¢ not a ring because there is no single consistent
ordering of all the nodes

39

Geometry’s Impact on Routing X %f ’

* Routing
» Neighbor selection: how a node picks its routing entries
» Route selection: how a node picks the next hop

» Proposed metric: flexibility

« amount of freedom to choose neighbors and next-hop paths
» FNS: flexibility in neighbor selection
* FRS: flexibility in route selection

* intuition: captures ability to “tune” DHT performance

« single predictor metric dependent only on routing issues

40

10



FRS for ang Geometry o

000

110

100

* Chord algorithm picks neighbor closest to
destination

A different algorithm picks the best of alternate
paths

4

FNS for Rlng Geometry ey
000
111 001
110 010
101 011
100

 Chord algorithm picks ith neighbor at 2! distance

- A different algorithm picks ith neighbor from [2,
2i+1)

42

Flexibility: at a Glance j Sy

Flexibility Ordering of Geometries

Neighbors Hypercube << Tree, XOR, Ring, Hybrid

(FNS) @) (M)

Routes Tree << XOR, Hybrid < Hypercube < Ring
(FRS) 1) (logN/2) (logN/2) (logN)

43

w8
P

Geometry - Flexibility - Performance?

Validate over three performance metrics:
1. resilience
2. path latency
3. path convergence

Metrics address two typical concerns:
« ability to handle node failure

 ability to incorporate proximity into overlay
routing

\ﬁ/}'

45

11



Analysis of Static Resilience -

Two aspects of robust routing

« Dynamic Recovery : how quickly routing state is
recovered after failures

» Static Resilience : how well the network routes before
recovery finishes
« captures how quickly recovery algorithms need to work
¢ depends on FRS

Evaluation:
 Fail a fraction of nodes, without recovering any state
* Metric: % Paths Failed

46

Does flexibility affect static resilience? -“..

100

80

60

% Failed Paths

20

0

Tree
N

40

XOR /
N X
Hypercube —

Hybrid
Ring

0

10

20

30

40

50 60 70

% Failed Nodes

80 20

Tree << XOR = Hybrid < Hypercube < Ring
Flexibility in Route Selection matters for Static Resilience

L]

o

P

-\)“/}u

L)

4

]
b

Which is more effective, FNS or FRS? v

100

FNS + FRS Ring
80 -
FNSRing' FRs Ring

60
Plain Ring

CDF

40

20 4

0 T T . .
0 400 800 1200 1600 2000
Latency (msec)

Plain << FRS << FNS = FNS+FRS

Neighbor Selection is much better than Route
Selection

48

Does Geometry affect performance of FNS «/ "

or FRS?

100

80

60

CDF

40

20

0

IFNS Ring
S~
~
FNS XO'R FRS Ring

FRS Hypercube

0

400

800
Latency (msec)

T T
1200 1600

2000

q
;

$3
-
N
_

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial

d b

49

12



Overview e

§ Yy b
* P2P Lookup
* Routed Lookups — Chord
e Comparison of DHTs
e |3
* Slides Carlo
By P A8
- I
Moblllty__ o o 5%t
i%
@ S — O =
5.0.0.1 12.0.0.4 Mobile
Node
Home Network 5.0.0.3

Network 5

53

: rey
Multicast iy
S, 5,
y l\\\ y 777\\} - )
@ R RY
\_ __ RP:Rendezvous
( R (R Point
<« 000 TV
} }
G C,
52
By £ A
i3: i i BN,
13: Motivation Ve

-_Today’s Internet based on point-to-point
abstraction

 Applications need more:
* Multicast

* Mobility

' ?
. Anycast So, what’s the pl’ob|em 7

A different solution for each service

* Existing solutions:
» Change IP layer
» Overlays




The i3 solution -

 Solution:
¢ Add an indirection layer on top of IP
¢ Implement using overlay networks

¢ Solution Components:
¢ Naming using “identifiers”
¢ Subscriptions using “triggers”
» DHT as the gluing substrate

13: Rendezvous Communication h

» Packets addressed to identifiers (“names”)

» Trigger=(Identifier, IP address): inserted by
receiver

’ send(R, data (mm
Q send(D, data) 0"\ ) @
Sender\ K%r— Recetver ()

‘ Senders decoupled from receivers ‘

Only primitive
needed
Ié\;t;ry pr;)blefn
. . incs..®@ 7
Indirection
By £ a
I 1 QAR .
13: Service Model SO
* API

e sendPacket(id, p);

e insertTrigger(id, addr);

e removeTrigger(id, addr); //
optional

 Best-effort service model (like IP)
 Triggers periodically refreshed by end-hosts

* Reliability, congestion control, and flow-
control implemented at end-hosts

57

a
ST
LY

13: Implementation

» Use a Distributed Hash Table
» Scalable, self-organizing, robust
« Suitable as a substrate for the Internet

B

IP.route(R)

 C sendR data)> @
C_send(ID, data) > L — ) _E]

Sender
N\
| DHTput(ia) | B —— [ DHT.put(id)

o a

14



Moblllty o

. The change of the receiver’s address
» from R to R’ is transparent to the sender

(a) Mobulity

60

e

NP
o ‘B

'

Multicast X

» Every packet (id, data) is forwarded to each
receiver R; that inserts the trigger (id, R;)

o
LN

(b) Multicast

Generalization: ldentifier Stack -y

'« Stack of identifiers
* i3 routes packet through these identifiers

* Receivers
* trigger maps id to <stack of ids>
» Sender can also specify id-stack in packet

* Mechanism:
« first id used to match trigger
* rest added to the RHS of trigger
* recursively continued

63

-4
Sy

Service Composition X

* Receiver mediated: R sets up chain and
passes id_gif/jpg to sender: sender oblivious

» Sender-mediated: S can include (id_gif/jpg, D)
in his packet: receiver oblivious

S GIF/JPG
'D send((ID_GIF/3PG, D), data) send(ID data)  send(R; data)

/ /qecelver R

JPG)
fo_orre ]

o a

15



