
1

15-744: Computer Networking

L-16 P2P

Overview

• P2P Lookup
• Overview
• Napster
• Gnutella

• Routed Lookups – Chord

2

• Comparison of DHTs

• I3

Peer-to-Peer Networks
• Typically each member stores/provides access to

content
• Basically a replication system for files• Basically a replication system for files

• Always a tradeoff between possible location of files and
searching difficulty

• Peer-to-peer allow files to be anywhere  searching is
the challenge

• Dynamic member list makes it more difficult
What other systems have similar goals?

3

• What other systems have similar goals?
• Routing, DNS

The Lookup Problem

N

Internet

N1
N2 N3

Publisher

Key=“title”
Value=MP3 data… Client

L k (“titl ”)

?

4

N6N5
N4

Lookup(“title”)

2

Centralized Lookup (Napster)

N2NS tL (“titl ” N4)

Publisher@

Client

Lookup(“title”)

N
N9 N7

DB

N8

N3

N2N1SetLoc(“title”, N4)

Key=“title”
Value=MP3 data…

N4

5

N6

Simple, but O(N) state and a single point of failure

Flooded Queries (Gnutella)

N2N Lookup(“title”)

N4Publisher@
Client

N6 N7
N8

N3

N2N1

Key=“title”
Value=MP3 data…

Lookup(title)

6

N9

Robust, but worst case O(N) messages per lookup

Routed Queries (Chord, etc.)

N2N

N4Publisher

Client

N6 N7
N8

N3

N2N1

Lookup(“title”)

Key=“title”
Value=MP3 data…

7

N9

Centralized: Napster

• Simple centralized scheme 
motivated by ability to sell/controly y

• How to find a file:
• On startup, client contacts central server

and reports list of files
• Query the index system  return a

machine that stores the required file

8

machine that stores the required file
• Ideally this is the closest/least-loaded

machine
• Fetch the file directly from peer

3

Centralized: Napster

• Advantages:
• SimpleSimple
• Easy to implement sophisticated search

engines on top of the index system
• Disadvantages:

• Robustness scalability

9

Robustness, scalability
• Easy to sue!

Flooding: Old Gnutella
• On startup, client contacts any servent

(server + client) in network
S t i t ti d t f d t l• Servent interconnection used to forward control
(queries, hits, etc)

• Idea: broadcast the request
• How to find a file:

• Send request to all neighbors

10

• Neighbors recursively forward the request
• Eventually a machine that has the file receives

the request, and it sends back the answer
• Transfers are done with HTTP between peers

Flooding: Old Gnutella

• Advantages:
• Totally decentralized, highly robust

• Disadvantages:
• Not scalable; the entire network can be

swamped with request (to alleviate this
problem, each request has a TTL)

• Especially hard on slow clients

11

Especially hard on slow clients
• At some point broadcast traffic on Gnutella

exceeded 56kbps – what happened?
• Modem users were effectively cut off!

Flooding: Old Gnutella Details
• Basic message header

• Unique ID, TTL, Hops
• Message typesMessage types

• Ping – probes network for other servents
• Pong – response to ping, contains IP addr, # of files, #

of Kbytes shared
• Query – search criteria + speed requirement of servent
• QueryHit – successful response to Query, contains

addr + port to transfer from, speed of servent, number
of hits hit results servent ID

12

of hits, hit results, servent ID
• Push – request to servent ID to initiate connection,

used to traverse firewalls
• Ping, Queries are flooded
• QueryHit, Pong, Push reverse path of previous

message

4

Flooding: Old Gnutella Example

Assume: m1’s neighbors are m2 and m3;
3’ i hb 4 d 5m3’s neighbors are m4 and m5;…

D

E

F

m4

m5

m6

E?
E?

E
E

13

A
B

C

m1
m2

m3

E?

E?
E

Flooding: Gnutella, Kazaa
• Modifies the Gnutella protocol into two-level hierarchy

• Hybrid of Gnutella and Napster
• Supernodesp

• Nodes that have better connection to Internet
• Act as temporary indexing servers for other nodes
• Help improve the stability of the network

• Standard nodes
• Connect to supernodes and report list of files
• Allows slower nodes to participate

S h

14

• Search
• Broadcast (Gnutella-style) search across supernodes

• Disadvantages
• Kept a centralized registration  allowed for law suits 

Overview

• P2P Lookup
• Overview
• Napster
• Gnutella

• Routed Lookups – Chord

15

• Comparison of DHTs

• I3

Routing: Structured Approaches

• Goal: make sure that an item (file) identified is always
found in a reasonable # of steps

• Abstraction: a distributed hash-table (DHT) data structure
• insert(id, item);
• item = query(id);
• Note: item can be anything: a data object, document, file, pointer

to a file…
• Proposals

• CAN (ICIR/Berkeley)

16

CAN (ICIR/Berkeley)
• Chord (MIT/Berkeley)
• Pastry (Rice)
• Tapestry (Berkeley)
• …

5

Routing: Chord

• Associate to each node and item a unique id
in an uni-dimensional space

• Properties
• Routing table size O(log(N)) , where N is the

total number of nodes
• Guarantees that a file is found in O(log(N))

steps

17

steps

Aside: Hashing
• Advantages

• Let nodes be numbered 1..m
Client uses a good hash function to map a URL to 1 m• Client uses a good hash function to map a URL to 1..m

• Say hash (url) = x, so, client fetches content from node
x

• No duplication – not being fault tolerant.
• One hop access
• Any problems?

18

y p
• What happens if a node goes down?
• What happens if a node comes back up?
• What if different nodes have different views?

Robust hashing
• Let 90 documents, node 1..9, node 10 which was

dead is alive again
• % of documents in the wrong node?

• 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,
82-90

• Disruption coefficient = ½
• Unacceptable, use consistent hashing – idea behind

Akamai!

19

Akamai!

Consistent Hash

• “view” = subset of all hash buckets that are
visible

• Desired features
• Balanced – in any one view, load is equal

across buckets
• Smoothness – little impact on hash bucket

contents when buckets are added/removed

20

contents when buckets are added/removed
• Spread – small set of hash buckets that may

hold an object regardless of views
• Load – across all views # of objects assigned to

hash bucket is small

6

Consistent Hash – Example

• Construction
• Assign each of C hash buckets to

random points on mod 2n circle
0

14

• Smoothness addition of bucket does not cause much

random points on mod 2n circle,
where, hash key size = n.

• Map object to random position on
circle

• Hash of object = closest
clockwise bucket 8

412
Bucket

21

• Smoothness  addition of bucket does not cause much
movement between existing buckets

• Spread & Load  small set of buckets that lie near object
• Balance  no bucket is responsible for large number of

objects

Routing: Chord Basic Lookup

N10
N120

“Where is key 80?”

N32

N105
N10 Where is key 80?

“N90 has K80”

22

N90

N60

K80

Routing: Finger table - Faster Lookups

½¼

1/8

23

N80

1/16
1/32
1/64
1/128

Routing: Chord Summary

• Assume identifier space is 0…2m

• Each node maintains
• Finger table

• Entry i in the finger table of n is the first node that
succeeds or equals n + 2i

• Predecessor node
• An item identified by id is stored on the

24

An item identified by id is stored on the
successor node of id

7

Routing: Chord Example

A Succ Table• Assume an
identifier space
0..8

• Node n1:(1)
joinsall entries
in its finger table
are initialized to

0
1

26

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

25

are initialized to
itself 3

4
5

Routing: Chord Example

N d 2 (3) j i• Node n2:(3) joins

0
1

26

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

26

3
4

5 i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

Routing: Chord Example

i id+2i succ
0 1 1

Succ. Table

• Nodes n3:(0), n4:(6)
join

0
1

26

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

0 1 1
1 2 2
2 4 0

i id+2i succ
0 7 0

Succ. Table

27

2

3
4

5

6

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

0 7 0
1 0 0
2 2 2

Routing: Chord Examples

i id+2i succ
0 1 1

Succ. Table
7

Items

• Nodes: n1:(1), n2(3),
n3(0), n4(6)

• Items: f1:(7), f2:(2) 0
1

26

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

0 1 1
1 2 2
2 4 0

Items
1

Succ Table

28

2

3
4

5

6

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

8

Routing: Query
• Upon receiving a

query for item id, a
node i id+2i succ

0 1 1

Succ. Table
7

Items

• Check whether stores
the item locally

• If not, forwards the
query to the largest
node in its successor
table that does not
exceed id

0
1

26

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

0 1 1
1 2 2
2 4 0

Items
1

Succ Table

query(7)

29

2

3
4

5

6

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

What can DHTs do for us?

• Distributed object lookup
• Based on object ID

• De-centralized file systems
• CFS, PAST, Ivy

• Application Layer Multicast
• Scribe, Bayeux, Splitstream

30

• Databases
• PIER

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routed Lookups – Chord

31

• Comparison of DHTs
• Slides Michael Stroucken

• I3

Comparison
• Many proposals for DHTs

• Tapestry (UCB) -- Symphony (Stanford) -- 1hop (MIT)

• Pastry (MSR Rice) -- Tangle (UCB) -- conChord (MIT)• Pastry (MSR, Rice) -- Tangle (UCB) -- conChord (MIT)

• Chord (MIT, UCB) -- SkipNet (MSR,UW) -- Apocrypha (Stanford)

• CAN (UCB, ICSI) -- Bamboo (UCB) -- LAND (Hebrew Univ.)

• Viceroy (Technion) -- Hieras (U.Cinn) -- ODRI (TexasA&M)

• Kademlia (NYU) -- Sprout (Stanford)

• Kelips (Cornell) -- Calot (Rochester)

• Koorde (MIT) JXTA’s (Sun)

32

• Koorde (MIT) -- JXTA s (Sun)

• What are the right design choices? Effect on
performance?

9

Deconstructing DHTs

Two observations:
1. Common approachpp

• N nodes; each labeled with a virtual identifier (128 bits)
• define “distance” function on the identifiers
• routing works to reduce the distance to the destination

2. DHTs differ primarily in their definition of “distance”
• typically derived from (loose) notion of a routing geometry

33

yp y () g g y

DHT Routing Geometries

• Geometries:
• Tree (Plaxton, Tapestry)(, p y)
• Ring (Chord)
• Hypercube (CAN)
• XOR (Kademlia)
• Hybrid (Pastry)

• What is the impact of geometry on routing?

34

What is the impact of geometry on routing?

Tree (Plaxton, Tapestry)

001000 011010 101100 111110

35

Geometry
• nodes are leaves in a binary tree
• distance = height of the smallest common subtree
• logN neighbors in subtrees at distance 1,2,…,logN

Hypercube (CAN)

100

110 111

101

000

100

001

010 011

101

Geometry

36

Geometry
• nodes are the corners of a hypercube
• distance = #matching bits in the IDs of two nodes
• logN neighbors per node; each at distance=1 away

10

Ring (Chord)

000

001111

101 011

010

001

110

100

37

Geometry
• nodes are points on a ring
• distance = numeric distance between two node IDs
• logN neighbors exponentially spaced over 0…N

100

Hybrid (Pastry)

Geometry:

38

y
• combination of a tree and ring
• two distance metrics
• default routing uses tree; fallback to ring under failures

• neighbors picked as on the tree

XOR (Kademlia)

00 01 1110

01 11 1000

Geometry:
• distance(A,B) = A XOR B

39

• logN neighbors per node spaced exponentially
• not a ring because there is no single consistent

ordering of all the nodes

Geometry’s Impact on Routing
• Routing

• Neighbor selection: how a node picks its routing entries
• Route selection: how a node picks the next hopRoute selection: how a node picks the next hop

• Proposed metric: flexibility
• amount of freedom to choose neighbors and next-hop paths

• FNS: flexibility in neighbor selection
• FRS: flexibility in route selection

40

• intuition: captures ability to “tune” DHT performance

• single predictor metric dependent only on routing issues

11

FRS for Ring Geometry

000

001111 110

101

100

011

010110

41

• Chord algorithm picks neighbor closest to
destination

• A different algorithm picks the best of alternate
paths

FNS for Ring Geometry

000

001111

101

100

011

010110

42

• Chord algorithm picks ith neighbor at 2i distance

• A different algorithm picks ith neighbor from [2i ,
2i+1)

Flexibility: at a Glance

Flexibility Ordering of Geometries

Neighbors

(FNS)

Hypercube << Tree, XOR, Ring, Hybrid

(1) (2i-1)

Routes Tree << XOR, Hybrid < Hypercube < Ring

43

(FRS) (1) (logN/2) (logN/2) (logN)

Geometry  Flexibility  Performance?

Validate over three performance metrics:
1. resilience
2. path latency
3. path convergence

Metrics address two typical concerns:
bilit t h dl d f il

45

• ability to handle node failure
• ability to incorporate proximity into overlay

routing

12

Analysis of Static Resilience
Two aspects of robust routing
• Dynamic Recovery : how quickly routing state is

recovered after failuresrecovered after failures
• Static Resilience : how well the network routes before

recovery finishes
• captures how quickly recovery algorithms need to work
• depends on FRS

Evaluation:

46

Evaluation:
• Fail a fraction of nodes, without recovering any state
• Metric: % Paths Failed

Does flexibility affect static resilience?

80

100

s XORTree

0

20

40

60

0 10 20 30 40 50 60 70 80 90

%
 F

ai
le

d
Pa

th

Ring

Hybrid

Tree
Hypercube

47

Tree << XOR ≈ Hybrid < Hypercube < Ring
Flexibility in Route Selection matters for Static Resilience

0 10 20 30 40 50 60 70 80 90
% Failed Nodes

80

100

FNS Ri

FNS + FRS Ring

Which is more effective, FNS or FRS?

0

20

40

60

0 400 800 1200 1600 2000

C
D

F

FNS Ring

Plain Ring

FRS Ring

48

0 400 800 1200 1600 2000
Latency (msec)

Plain << FRS << FNS ≈ FNS+FRS
Neighbor Selection is much better than Route

Selection

80

100
FNS Ring

Does Geometry affect performance of FNS
or FRS?

0

20

40

60

C
D

F

FRS RingFNS XOR

FRS Hypercube

49

0 400 800 1200 1600 2000
Latency (msec)

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial

13

Overview

• P2P Lookup

• Routed Lookups – Chord

• Comparison of DHTs

51

• I3
• Slides Carlo

Multicast

S1 S21 2

R RP RR

RP: Rendezvous

C1 C2

RR Point

52

Mobility

Sender

HA FA

5.0.0.1 12.0.0.4 Mobile

Home Network

Network 5

5.0.0.1 12.0.0.4
Node

5.0.0.3

53

i3: Motivation
• Today’s Internet based on point-to-point

abstraction

• Applications need more:
• Multicast
• Mobility
• Anycast So, what’s the problem?

A different solution for each service

54

• Existing solutions:
• Change IP layer
• Overlays

14

The i3 solution
• Solution:

• Add an indirection layer on top of IP
• Implement using overlay networksp g y

• Solution Components:
• Naming using “identifiers”
• Subscriptions using “triggers”
• DHT as the gluing substrate

55

Indirection
Every problem

in CS … 

Only primitive
needed

i3: Rendezvous Communication

• Packets addressed to identifiers (“names”)
• Trigger=(Identifier, IP address): inserted by gg (,) y

receiver

Sender Receiver (R)trigger

send(ID, data)
send(R, data)

56

ID R

Senders decoupled from receivers

i3: Service Model
• API

• sendPacket(id, p);
• insertTrigger(id, addr);
• removeTrigger(id, addr); //
optional

• Best-effort service model (like IP)

57

• Triggers periodically refreshed by end-hosts
• Reliability, congestion control, and flow-

control implemented at end-hosts

i3: Implementation

• Use a Distributed Hash Table
• Scalable, self-organizing, robust
• Suitable as a substrate for the Internet

send(ID, data)
send(R, data)

IP.route(R)

58

Sender Receiver (R)

ID R

trigger

DHT.put(id) DHT.put(id)

15

Mobility

• The change of the receiver’s address
• from R to R’ is transparent to the senderp

60

Multicast
• Every packet (id, data) is forwarded to each

receiver Ri that inserts the trigger (id, Ri)

61

Generalization: Identifier Stack
• Stack of identifiers

• i3 routes packet through these identifiers

• Receivers
• trigger maps id to <stack of ids>

• Sender can also specify id-stack in packet

• Mechanism:
• first id used to match trigger
• rest added to the RHS of trigger
• recursively continued

63

Service Composition
• Receiver mediated: R sets up chain and

passes id_gif/jpg to sender: sender oblivious

• Sender-mediated: S can include (id_gif/jpg, ID)
in his packet: receiver oblivious

send((ID_GIF/JPG,ID), data)

S_GIF/JPG

send(ID, data) send(R, data)

64

Sender
(GIF)

Receiver R
(JPG)

ID_GIF/JPG S_GIF/JPG
ID R

