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15-744: Computer Networking

L-16 P2P

Overview

• P2P Lookup
• Overview
• Napster
• Gnutella

• Routed Lookups – Chord
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• Comparison of DHTs

• I3

Peer-to-Peer Networks
• Typically each member stores/provides access to 

content
• Basically a replication system for files• Basically a replication system for files

• Always a tradeoff between possible location of files and 
searching difficulty

• Peer-to-peer allow files to be anywhere  searching is 
the challenge

• Dynamic member list makes it more difficult
What other systems have similar goals?
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• What other systems have similar goals?
• Routing, DNS

The Lookup Problem

N

Internet
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Publisher

Key=“title”
Value=MP3 data… Client
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Lookup(“title”)
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Centralized Lookup (Napster)

N2NS tL (“titl ” N4)

Publisher@

Client

Lookup(“title”)

N
N9 N7

DB
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N3

N2N1SetLoc(“title”, N4)

Key=“title”
Value=MP3 data…

N4
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N6

Simple, but O(N) state and a single point of failure

Flooded Queries (Gnutella)

N2N Lookup(“title”)

N4Publisher@
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N6 N7
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Key=“title”
Value=MP3 data…

Lookup( title )
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N9

Robust, but worst case O(N) messages per lookup

Routed Queries (Chord, etc.)

N2N

N4Publisher

Client
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Lookup(“title”)

Key=“title”
Value=MP3 data…
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N9

Centralized: Napster

• Simple centralized scheme 
motivated by ability to sell/controly y

• How to find a file:
• On startup, client contacts central server 

and reports list of files
• Query the index system  return a 

machine that stores the required file
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machine that stores the required file
• Ideally this is the closest/least-loaded 

machine
• Fetch the file directly from peer
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Centralized: Napster

• Advantages: 
• SimpleSimple
• Easy to implement sophisticated search 

engines on top of the index system
• Disadvantages:

• Robustness scalability
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Robustness, scalability
• Easy to sue!

Flooding: Old Gnutella
• On startup, client contacts any servent 

(server + client) in network
S t i t ti d t f d t l• Servent interconnection used to forward control 
(queries, hits, etc)

• Idea: broadcast the request
• How to find a file:

• Send request to all neighbors
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• Neighbors recursively forward the request
• Eventually a machine that has the file receives 

the request, and it sends back the answer
• Transfers are done with HTTP between peers

Flooding: Old Gnutella

• Advantages:
• Totally decentralized, highly robust

• Disadvantages:
• Not scalable; the entire network can be 

swamped with request (to alleviate this 
problem, each request has a TTL)

• Especially hard on slow clients
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Especially hard on slow clients
• At some point broadcast traffic on Gnutella 

exceeded 56kbps – what happened?
• Modem users were effectively cut off!

Flooding: Old Gnutella Details
• Basic message header

• Unique ID, TTL, Hops
• Message typesMessage types

• Ping – probes network for other servents
• Pong – response to ping, contains IP addr, # of files, # 

of Kbytes shared
• Query – search criteria + speed requirement of servent
• QueryHit – successful response to Query, contains 

addr + port to transfer from, speed of servent, number 
of hits hit results servent ID
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of hits, hit results, servent ID
• Push – request to servent ID to initiate connection, 

used to traverse firewalls
• Ping, Queries are flooded
• QueryHit, Pong, Push reverse path of previous 

message
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Flooding: Old Gnutella Example

Assume: m1’s neighbors are m2 and m3; 
3’ i hb 4 d 5m3’s neighbors are m4 and m5;…
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E
E

13

A
B

C

m1
m2

m3

E?

E?
E

Flooding: Gnutella, Kazaa
• Modifies the Gnutella protocol into two-level hierarchy

• Hybrid of Gnutella and Napster
• Supernodesp

• Nodes that have better connection to Internet
• Act as temporary indexing servers for other nodes
• Help improve the stability of the network

• Standard nodes
• Connect to supernodes and report list of files
• Allows slower nodes to participate

S h

14

• Search
• Broadcast (Gnutella-style) search across supernodes

• Disadvantages
• Kept a centralized registration  allowed for law suits 

Overview

• P2P Lookup
• Overview
• Napster
• Gnutella

• Routed Lookups – Chord
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• Comparison of DHTs

• I3

Routing: Structured Approaches

• Goal: make sure that an item (file) identified is always 
found in a reasonable # of steps

• Abstraction: a distributed hash-table (DHT) data structure 
• insert(id, item);
• item = query(id);
• Note: item can be anything: a data object, document, file, pointer 

to a file…
• Proposals

• CAN (ICIR/Berkeley)
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CAN (ICIR/Berkeley)
• Chord (MIT/Berkeley)
• Pastry (Rice)
• Tapestry (Berkeley)
• …
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Routing: Chord

• Associate to each node and item a unique id
in an uni-dimensional space

• Properties 
• Routing table size O(log(N)) , where N is the 

total number of nodes
• Guarantees that a file is found in O(log(N)) 

steps
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steps

Aside: Hashing
• Advantages

• Let nodes be numbered 1..m
Client uses a good hash function to map a URL to 1 m• Client uses a good hash function to map a URL to 1..m 

• Say hash (url) = x, so, client fetches content from node 
x

• No duplication – not being fault tolerant.
• One hop access
• Any problems?
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y p
• What happens if a node goes down?
• What happens if a node comes back up? 
• What if different nodes have different views?

Robust hashing
• Let 90 documents, node 1..9, node 10 which was 

dead is alive again
• % of documents in the wrong node?

• 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80, 
82-90

• Disruption coefficient = ½
• Unacceptable, use consistent hashing – idea behind 

Akamai!
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Akamai!

Consistent Hash

• “view” = subset of all hash buckets that are 
visible

• Desired features
• Balanced – in any one view, load is equal 

across buckets
• Smoothness – little impact on hash bucket 

contents when buckets are added/removed
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contents when buckets are added/removed
• Spread – small set of hash buckets that may 

hold an object regardless of views 
• Load – across all views # of objects assigned to 

hash bucket is small
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Consistent Hash – Example

• Construction
• Assign each of C hash buckets to 

random points on mod 2n circle
0
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• Smoothness addition of bucket does not cause much

random points on mod 2n circle, 
where, hash key size = n.

• Map object to random position on 
circle

• Hash of object = closest 
clockwise bucket 8

412
Bucket
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• Smoothness  addition of bucket does not cause much 
movement between existing buckets

• Spread & Load  small set of buckets that lie near object
• Balance  no bucket is responsible for large number of 

objects

Routing: Chord Basic Lookup

N10
N120

“Where is key 80?”

N32

N105
N10 Where is key 80?

“N90 has K80”
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N90

N60

K80

Routing: Finger table - Faster Lookups

½¼

1/8
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N80

1/16
1/32
1/64
1/128

Routing: Chord Summary

• Assume identifier space is 0…2m

• Each node maintains
• Finger table

• Entry i in the finger table of n is the first node that 
succeeds or equals n + 2i

• Predecessor node
• An item identified by id is stored on the

24

An item identified by id is stored on the 
successor node of id
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Routing: Chord Example

A Succ Table• Assume an 
identifier space 
0..8

• Node n1:(1) 
joinsall entries 
in its finger table 
are initialized to

0
1

26

7
i  id+2i  succ
0    2      1
1    3      1
2    5      1 

Succ. Table
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are initialized to 
itself 3

4
5

Routing: Chord Example

N d 2 (3) j i• Node n2:(3) joins

0
1

26

7
i  id+2i  succ
0    2      2
1    3      1
2    5      1 

Succ. Table
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3
4

5 i  id+2i  succ
0    3      1
1    4      1
2    6      1 

Succ. Table

Routing: Chord Example

i  id+2i  succ
0 1 1

Succ. Table

• Nodes n3:(0), n4:(6) 
join 

0
1

26

7
i  id+2i  succ
0    2      2
1    3      6
2    5      6 

Succ. Table

0    1      1
1    2      2
2    4      0 

i  id+2i  succ
0 7 0

Succ. Table
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2

3
4

5

6

i  id+2i  succ
0    3      6
1    4      6
2    6      6 

Succ. Table

0    7      0
1    0      0
2    2      2 

Routing: Chord Examples

i  id+2i  succ
0 1 1

Succ. Table
7

Items 

• Nodes: n1:(1), n2(3), 
n3(0), n4(6)

• Items: f1:(7), f2:(2) 0
1

26

7 i  id+2i  succ
0    2      2
1    3      6
2    5      6 

Succ. Table

0    1      1
1    2      2
2    4      0 

Items 
1

Succ Table
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2

3
4

5

6

i  id+2i  succ
0    3      6
1    4      6
2    6      6 

Succ. Table

i  id+2i  succ
0    7      0
1    0      0
2    2      2 

Succ. Table
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Routing: Query
• Upon receiving a 

query for item id, a 
node i  id+2i  succ

0 1 1

Succ. Table
7

Items 

• Check whether stores 
the item locally

• If not, forwards the 
query to the largest 
node in its successor 
table that does not 
exceed id

0
1

26

7 i  id+2i  succ
0    2      2
1    3      6
2    5      6 

Succ. Table

0    1      1
1    2      2
2    4      0 

Items 
1

Succ Table

query(7)
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2

3
4

5

6

i  id+2i  succ
0    3      6
1    4      6
2    6      6 

Succ. Table

i  id+2i  succ
0    7      0
1    0      0
2    2      2 

Succ. Table

What can DHTs do for us?

• Distributed object lookup
• Based on object ID

• De-centralized file systems
• CFS, PAST, Ivy

• Application Layer Multicast
• Scribe, Bayeux, Splitstream
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• Databases
• PIER

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routed Lookups – Chord
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• Comparison of DHTs
• Slides Michael Stroucken

• I3

Comparison
• Many proposals for DHTs

• Tapestry (UCB) -- Symphony (Stanford)   -- 1hop (MIT)

• Pastry (MSR Rice) -- Tangle (UCB) -- conChord (MIT)• Pastry (MSR, Rice)      -- Tangle (UCB)                -- conChord (MIT)

• Chord (MIT, UCB)        -- SkipNet (MSR,UW)       -- Apocrypha (Stanford)

• CAN (UCB, ICSI)         -- Bamboo (UCB) -- LAND (Hebrew Univ.)

• Viceroy (Technion)       -- Hieras (U.Cinn) -- ODRI (TexasA&M)

• Kademlia (NYU)           -- Sprout (Stanford)

• Kelips (Cornell) -- Calot (Rochester)

• Koorde (MIT) JXTA’s (Sun)
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• Koorde (MIT) -- JXTA s (Sun)

• What are the right design choices? Effect on 
performance?
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Deconstructing DHTs

Two observations:
1. Common approachpp

• N nodes; each labeled with a virtual identifier (128 bits)
• define “distance” function on the identifiers
• routing works to reduce the distance to the destination

2. DHTs differ primarily in their definition of “distance”
• typically derived from (loose) notion of a routing geometry

33

yp y ( ) g g y

DHT Routing Geometries

• Geometries: 
• Tree  (Plaxton, Tapestry)( , p y)
• Ring (Chord)
• Hypercube (CAN)
• XOR (Kademlia)
• Hybrid (Pastry)

• What is the impact of geometry on routing?
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What is the impact of geometry on routing?

Tree (Plaxton, Tapestry)

001000 011010 101100 111110
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Geometry
• nodes are leaves in a binary tree
• distance = height of the smallest common subtree 
• logN neighbors in subtrees at distance 1,2,…,logN

Hypercube (CAN)

100

110 111

101

000

100

001

010 011

101

Geometry
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Geometry
• nodes are the corners of a hypercube
• distance = #matching bits in the IDs of two nodes
• logN neighbors per node; each at distance=1 away
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Ring (Chord)

000

001111

101 011

010

001

110

100
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Geometry
• nodes are points on a ring
• distance = numeric distance between two node IDs
• logN neighbors exponentially spaced over 0…N

100

Hybrid (Pastry)

Geometry:

38

y
• combination of a tree and ring
• two distance metrics
• default routing uses tree; fallback to ring under failures

• neighbors picked as on the tree

XOR (Kademlia)

00 01 1110

01 11 1000

Geometry:
• distance(A,B) = A XOR B
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• logN neighbors per node spaced exponentially
• not a ring because there is no single consistent 

ordering of all the nodes

Geometry’s Impact on Routing
• Routing 

• Neighbor selection: how a node picks its routing entries
• Route selection: how a node picks the next hopRoute selection: how a node picks the next hop 

• Proposed metric: flexibility
• amount of freedom to choose neighbors and next-hop paths

• FNS: flexibility in neighbor selection
• FRS: flexibility in route selection
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• intuition: captures ability to “tune” DHT performance  

• single predictor metric dependent only on routing issues
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FRS for Ring Geometry

000

001111 110

101

100

011

010110
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• Chord algorithm picks neighbor closest to 
destination

• A different algorithm picks the best of alternate 
paths

FNS for Ring Geometry

000

001111

101

100

011

010110
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• Chord algorithm picks ith neighbor at 2i distance

• A different algorithm picks ith neighbor from [2i , 
2i+1)

Flexibility: at a Glance

Flexibility Ordering of Geometries

Neighbors

(FNS)

Hypercube  <<   Tree, XOR, Ring, Hybrid

(1)                              (2i-1)      

Routes Tree  <<  XOR, Hybrid  <  Hypercube  <  Ring
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(FRS) (1)          (logN/2)               (logN/2)       (logN)

Geometry  Flexibility  Performance?

Validate over three performance metrics:
1. resilience
2. path latency
3. path convergence 

Metrics address two typical concerns: 
bilit t h dl d f il

45

• ability to handle node failure
• ability to incorporate proximity into overlay 

routing
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Analysis of Static Resilience
Two aspects of robust routing
• Dynamic Recovery : how quickly routing state is 

recovered after failuresrecovered after failures
• Static Resilience : how well the network routes before 

recovery finishes
• captures how quickly recovery algorithms need to work
• depends on FRS

Evaluation:
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Evaluation:
• Fail a fraction of nodes, without recovering any state
• Metric: % Paths Failed

Does flexibility affect static resilience?

80
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s XORTree
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Tree  <<  XOR  ≈  Hybrid  <  Hypercube  <  Ring
Flexibility in Route Selection matters for Static Resilience

0 10 20 30 40 50 60 70 80 90
% Failed Nodes

80

100

FNS Ri

FNS + FRS Ring

Which is more effective, FNS or FRS?
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FNS Ring

Plain Ring 

FRS Ring
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0 400 800 1200 1600 2000
Latency (msec)

Plain  <<   FRS   <<  FNS ≈ FNS+FRS
Neighbor Selection is much better than Route 

Selection

80

100
FNS Ring

Does Geometry affect performance of FNS 
or FRS?

0

20

40

60

C
D

F

FRS RingFNS XOR

FRS Hypercube
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0 400 800 1200 1600 2000
Latency (msec)

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial
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Overview

• P2P Lookup

• Routed Lookups – Chord

• Comparison of DHTs
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• I3
• Slides Carlo

Multicast

S1 S21 2

R RP RR

RP: Rendezvous 

C1 C2

RR Point
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Mobility

Sender

HA FA

5.0.0.1 12.0.0.4 Mobile 

Home Network

Network 5

5.0.0.1 12.0.0.4
Node

5.0.0.3

53

i3: Motivation
• Today’s Internet based on point-to-point 

abstraction

• Applications need more:
• Multicast
• Mobility
• Anycast So, what’s the problem?

A different solution for each service
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• Existing solutions:
• Change IP layer
• Overlays
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The i3 solution
• Solution: 

• Add an indirection layer on top of IP
• Implement using overlay networksp g y

• Solution Components:
• Naming using “identifiers”
• Subscriptions using “triggers”
• DHT as the gluing substrate
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Indirection
Every problem 

in CS … 

Only primitive
needed

i3: Rendezvous Communication

• Packets addressed to identifiers (“names”)
• Trigger=(Identifier, IP address): inserted by gg ( , ) y

receiver

Sender Receiver (R)trigger

send(ID, data)
send(R, data)

56

ID R

Senders decoupled from receivers

i3: Service Model
• API

• sendPacket(id, p);
• insertTrigger(id, addr);
• removeTrigger(id, addr); // 
optional

• Best-effort service model (like IP)
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• Triggers periodically refreshed by end-hosts
• Reliability, congestion control, and flow-

control implemented at end-hosts

i3: Implementation

• Use a Distributed Hash Table 
• Scalable, self-organizing, robust
• Suitable as a substrate for the Internet

send(ID, data)
send(R, data)

IP.route(R)
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Sender Receiver (R)

ID R

trigger

DHT.put(id) DHT.put(id)



15

Mobility

• The change of the receiver’s address 
• from R to R’ is transparent to the senderp
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Multicast
• Every packet (id, data) is forwarded to each 

receiver Ri that inserts the trigger (id, Ri)

61

Generalization: Identifier Stack
• Stack of identifiers

• i3 routes packet through these identifiers

• Receivers
• trigger maps id to <stack of ids>

• Sender can also specify id-stack in packet

• Mechanism:
• first id used to match trigger
• rest added to the RHS of trigger 
• recursively continued
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Service Composition
• Receiver mediated: R sets up chain and 

passes id_gif/jpg to sender: sender oblivious

• Sender-mediated: S can include (id_gif/jpg, ID) 
in his packet: receiver oblivious

send((ID_GIF/JPG,ID), data)

S_GIF/JPG

send(ID, data) send(R, data)
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Sender
(GIF)

Receiver R
(JPG)

ID_GIF/JPG S_GIF/JPG
ID R


