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15-744: Computer Networking

L-14 Network Topology

Today’s Lecture

• Structural generators
• Power laws, HOT graphs, .., g p ,
• Assigned reading

• A First Principles Approach to Understanding 
the Internet’s Router-level Topology

• Measuring ISP Topologies with Rocketfuel (2 
sections)sections)

• Optional reading:
• On Power-Law Relationships of the Internet 

Topology
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Outline

• Motivation/Background

• Power Laws

• Optimization Models

• Measuring Topology
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Why study topology?

• Correctness of network protocols typically 
independent of topology

• Performance of networks critically 
dependent on topology
• e.g., convergence of route information

• Internet impossible to replicate 
• Modeling of topology needed to generate 

test topologies
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Internet topologies
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More on topologies..
• Router level topologies reflect physical connectivity

between nodes
• Inferred from tools like traceroute or well known publicInferred from tools like traceroute or well known public 

measurement projects like Mercator and Skitter

• AS graph reflects a peering relationship between two 
providers/clients
• Inferred from inter-domain routers that run BGP and publlic 

projects like Oregon Route Views

• Inferring both is difficult, and often inaccurate 
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Hub-and-Spoke Topology

• Single hub node
• Common in enterprise networks
• Main location and satellite sites
• Simple design and trivial routing

• Problems
• Single point of failure

B d idth li it ti• Bandwidth limitations
• High delay between sites
• Costs to backhaul to hub
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Simple Alternatives to Hub-and-Spoke
• Dual hub-and-spoke

• Higher reliability
• Higher cost• Higher cost
• Good building block

• Levels of hierarchy
• Reduce backhaul cost
• Aggregate the gg g

bandwidth
• Shorter site-to-site 

delay …
8
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Abilene Internet2 Backbone
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Points-of-Presence (PoPs)
• Inter-PoP links

• Long distances
Hi h b d idth I P P

Inter-PoP
• High bandwidth

• Intra-PoP links
• Short cables between 

racks or floors
• Aggregated bandwidth

Links to other

Intra-PoP

• Links to other 
networks
• Wide range of media 

and bandwidth

Other networks
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Deciding Where to Locate Nodes and Links

• Placing Points-of-Presence (PoPs)
• Large population of potential customers
• Other providers or exchange points
• Cost and availability of real-estate
• Mostly in major metropolitan areas

• Placing links between PoPs
Al d fib i th d• Already fiber in the ground

• Needed to limit propagation delay
• Needed to handle the traffic load

12



4

Trends in Topology Modeling
Observation

• Long-range links are expensive
Modeling Approach

• Random graph (Waxman88)

• Real networks are not random, 
but have obvious hierarchy

• Internet topologies exhibit 
power law degree distributions 
(Faloutsos et al., 1999)

• Structural models (GT-ITM 
Calvert/Zegura, 1996)

• Degree-based models replicate 
power-law degree sequences

• Physical networks have hard 
technological (and economic) 
constraints.

• Optimization-driven models 
topologies consistent with design 
tradeoffs of network engineers
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Waxman model (Waxman 1988)

• Router level model
• Nodes placed at random in 

2-d space with dimension L
• Probability of edge (u,v):

• a * exp{-d / (b * L)}
d i E lid di t ( )

v

u d(u,v)

• d is Euclidean distance (u,v)
• a and b are constants

• Models locality
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Real world topologies

• Real networks exhibit
• Hierarchical structure
• Specialized nodes (transit, stub..)
• Connectivity requirements
• Redundancy

• Characteristics incorporated into the 
Georgia Tech Internetwork TopologyGeorgia Tech Internetwork Topology 
Models (GT-ITM) simulator (E. Zegura, 
K.Calvert and M.J. Donahoo, 1995)
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Transit-stub model (Zegura 1997)
• Router level model
• Transit domains 

l d i 2 d• placed in 2-d space
• populated with routers 
• connected to each other

• Stub domains 
• placed in 2-d space
• populated with routersp p
• connected to transit 

domains
• Models hierarchy

16
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So…are we done?

• No!
• In 1999, Faloutsos, Faloutsos and , ,

Faloutsos published a paper, demonstrating 
power law relationships in Internet graphs

• Specifically, the node degree distribution 
exhibited power laws

That Changed Everything…..
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Outline

• Motivation/Background

• Power Laws
• Slides John Dickerson

• Optimization Models

• Measuring Topology
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Power laws in AS level topology
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Source: Faloutsos et al. (1999)
Power Laws and Internet Topology
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GT-ITM abandoned..

• GT-ITM did not give power law degree 
graphs

• New topology generators and explanation 
for power law degrees were sought

• Focus of generators to match degree 
distribution of observed graph
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Inet (Jin 2000)
• Generate degree sequence 
• Build spanning tree over nodes 

with degree larger than 1, 
using preferential connectivity
• randomly select node u not in 

tree
• join u to existing node v with 

probability d(v)/d(w)probability d(v)/d(w)
• Connect degree 1 nodes using 

preferential connectivity
• Add remaining edges using 

preferential connectivity
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Power law random graph (PLRG)
• Operations

• assign degrees to nodes drawn from power law distribution
• create kv copies of node v; kv degree of v.
• randomly match nodes in pool
• aggregate edges

2

may be disconnected, contain multiple edges, self-loops
• contains unique giant component for right choice of 

parameters 
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11

Barabasi model: fixed exponent
• incremental growth

• initially, m0 nodes
• step: add new node i with m edges

• linear preferential attachment
• connect to node i with probability ki / ∑ kj

0.5 0.5 0.25

24

0.5 0.25

new nodeexisting node

may contain multi-edges, self-loops
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Features of Degree-Based Models

Preferential Attachment Expected Degree Sequence

• Degree sequence follows a power law (by g q p ( y
construction)

• High-degree nodes correspond to highly connected 
central “hubs”, which are crucial to the system

• Achilles’ heel: robust to random failure, fragile to 
specific attack 
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Does Internet graph have these properties?

• No…(There is no Memphis!)
• Emphasis on degree distribution - structure p g

ignored
• Real Internet very structured
• Evolution of graph is highly constrained

26

Problem With Power Law

• ... but they're descriptive models!

• No correct physical explanation, need an 
understanding of:
• the driving force behind deployment
• the driving force behind growth
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Outline

• Motivation/Background

• Power Laws

• Optimization Models

• Measuring Topology
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Li et al.

• Consider the explicit design of the Internet
• Annotated network graphs (capacity, 

bandwidth)
• Technological and economic limitations
• Network performance

• Seek a theory for Internet topology that is 
explanatory and not merely descriptiveexplanatory and not merely descriptive.
• Explain high variability in network connectivity
• Ability to match large scale statistics (e.g. 

power laws) is only secondary evidence
29
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Total Bandwidth 

Router Technology Constraint
Cisco 12416 GSR, circa 2002
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Heuristically Optimal Topology

Mesh-like core of fast, low degree routers

Cores

Hosts

EdgesHigh degree nodes 
are at the edges.
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Comparison Metric: Network Performance

Given realistic technology constraints on routers, how well 
is the network able to carry traffic?

Step 1: Constrain to Step 2: Compute traffic demandStep 1: Constrain to 
be feasible
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Likelihood-Related Metric

j

connected
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)(Define the metric (di = degree of 
node i)

• Easily computed for any graph
• Depends on the structure of the graph, not the generation 

mechanism
• Measures how “hub-like” the network core is

• Graphs that connect nodes with high (low) degree will have high 
value

• Used here to distinguish between different graphs
• Has a more specific meaning in the context of the general model of 

random graphs
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P(g) 
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PA PLRG/GRGHOT

Structure Determines Performance

P(g) = 1.19 x 1010 P(g) = 1.64 x 1010P(g) = 1.13 x 1012
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Outline

• Motivation/Background

• Power Laws

• Optimization Models

• Measuring Topology
• Slides John Wright
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Summary Network Topology
• Faloutsos3 [SIGCOMM99] on Internet topology

• Observed many “power laws” in the Internet structure
• Router level connections, AS-level connections, neighborhood sizes

• Power law observation refuted later Lakhina [INFOCOM00]• Power law observation refuted later, Lakhina [INFOCOM00]

• Inspired many degree-based topology generators
• Compared properties of generated graphs with those of measured 

graphs to validate generator
• What is wrong with these topologies? Li et al [SIGCOMM04]

• Many graphs with similar distribution have different properties
• Random graph generation models don’t have network-intrinsic 

meaningmeaning
• Should look at fundamental trade-offs to understand topology

• Technology constraints and economic trade-offs
• Graphs arising out of such generation better explain topology and its 

properties, but are unlikely to be generated by random processes!
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Announcements

• No lecture Friday and Monday
• Next course segment is on overlay g y

networks and future Internet architecture
• Readings are up to date for the semester
• May need to reshuffle final few lectures a bit

• Project update: good progress but need to 
b t i klbecome more concrete quickly
• What will be your initial results?
• Timeline for the remaining seven weeks?
• Short reports on status by Oct 28 (e-mail)
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