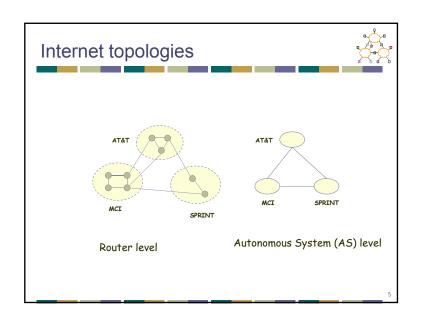


Today's Lecture

- Structural generators
- Power laws, HOT graphs, ..
- · Assigned reading
 - A First Principles Approach to Understanding the Internet's Router-level Topology
 - Measuring ISP Topologies with Rocketfuel (2 sections)
- · Optional reading:
 - On Power-Law Relationships of the Internet Topology

Outline



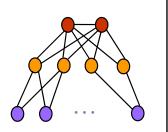
- · Motivation/Background
- Power Laws
- Optimization Models
- Measuring Topology

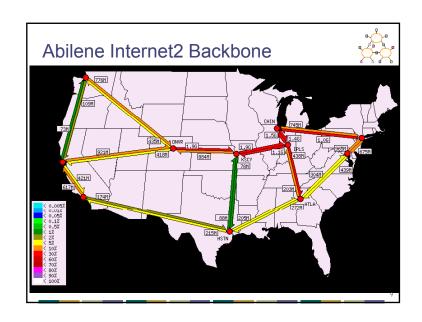
Why study topology?

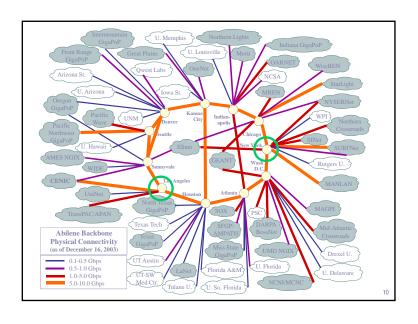
- Correctness of network protocols typically independent of topology
- Performance of networks critically dependent on topology
 - e.g., convergence of route information
- Internet impossible to replicate
- Modeling of topology needed to generate test topologies

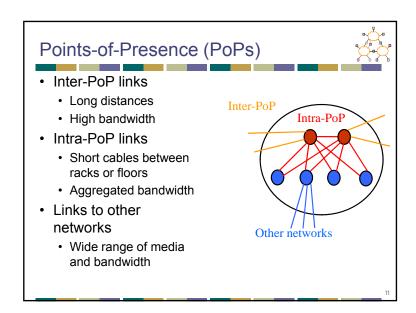
More on topologies..

- Router level topologies reflect physical connectivity between nodes
 - Inferred from tools like traceroute or well known public measurement projects like Mercator and Skitter
- AS graph reflects a peering relationship between two providers/clients
 - Inferred from inter-domain routers that run BGP and publlic projects like Oregon Route Views
- Inferring both is difficult, and often inaccurate


Hub-and-Spoke Topology




- Single hub node
 - · Common in enterprise networks
 - · Main location and satellite sites
 - · Simple design and trivial routing
- Problems
 - Single point of failure
 - · Bandwidth limitations
 - · High delay between sites
 - · Costs to backhaul to hub


Simple Alternatives to Hub-and-Spoke

- Dual hub-and-spoke
 - Higher reliability
 - Higher cost
 - Good building block
- · Levels of hierarchy
 - Reduce backhaul cost
 - Aggregate the bandwidth
 - Shorter site-to-site delay

Deciding Where to Locate Nodes and Links

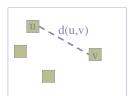
- Placing Points-of-Presence (PoPs)
 - Large population of potential customers
 - · Other providers or exchange points
 - · Cost and availability of real-estate
 - · Mostly in major metropolitan areas
- Placing links between PoPs
 - · Already fiber in the ground
 - Needed to limit propagation delay
 - · Needed to handle the traffic load

12

Trends in Topology Modeling

Observation

- · Long-range links are expensive
- Real networks are not random, but have obvious hierarchy
- Internet topologies exhibit power law degree distributions (Faloutsos et al., 1999)
- Physical networks have hard technological (and economic) constraints.

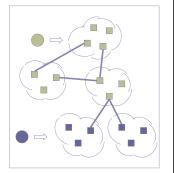

Modeling Approach

- Random graph (Waxman88)
- Structural models (GT-ITM Calvert/Zegura, 1996)
- Degree-based models replicate power-law degree sequences
- Optimization-driven models topologies consistent with design tradeoffs of network engineers

Waxman model (Waxman 1988)

- Router level model
- Nodes placed at random in 2-d space with dimension L
- Probability of edge (u,v):
 - a * exp{-d / (b * L)}
 - d is Euclidean distance (u,v)
 - · a and b are constants
- · Models locality

Real world topologies



- Real networks exhibit
 - Hierarchical structure
 - Specialized nodes (transit, stub..)
 - · Connectivity requirements
 - Redundancy
- Characteristics incorporated into the Georgia Tech Internetwork Topology Models (GT-ITM) simulator (E. Zegura, K.Calvert and M.J. Donahoo, 1995)

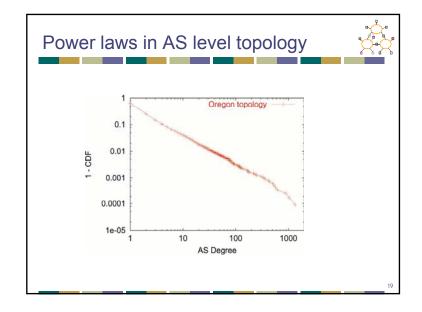
Transit-stub model (Zegura 1997)

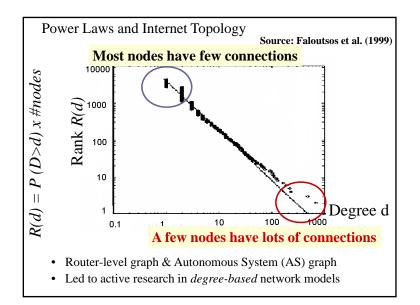
- Router level model
- · Transit domains
 - placed in 2-d space
 - · populated with routers
 - · connected to each other
- Stub domains
 - · placed in 2-d space
 - populated with routers
 - connected to transit domains
- Models hierarchy

So...are we done?

- No!
- In 1999, Faloutsos, Faloutsos and Faloutsos published a paper, demonstrating power law relationships in Internet graphs
- Specifically, the node degree distribution exhibited power laws

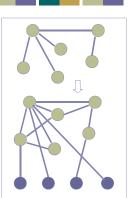
That Changed Everything.....


17


Outline

- · Motivation/Background
- Power Laws
 - Slides John Dickerson
- Optimization Models
- Measuring Topology

10


GT-ITM abandoned..

- GT-ITM did not give power law degree graphs
- New topology generators and explanation for power law degrees were sought
- Focus of generators to match degree distribution of observed graph

Inet (Jin 2000)

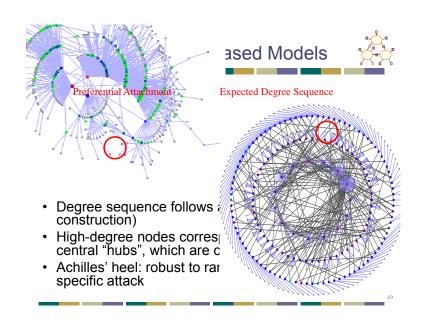
- Generate degree sequence
- Build spanning tree over nodes with degree larger than 1, using preferential connectivity
 - randomly select node u not in tree
 - join u to existing node v with probability d(v)/∑d(w)
- Connect degree 1 nodes using preferential connectivity
- Add remaining edges using preferential connectivity

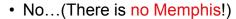
Power law random graph (PLRG)

- Operations
 - assign degrees to nodes drawn from power law distribution
 - create kv copies of node v; kv degree of v.
 - randomly match nodes in pool
 - · aggregate edges

may be disconnected, contain multiple edges, self-loops

contains unique giant component for right choice of parameters


Barabasi model: fixed exponent


- · incremental growth
 - initially, m0 nodes
 - step: add new node i with m edges
- linear preferential attachment
 - connect to node i with probability ki / \sum kj

may contain multi-edges, self-loops

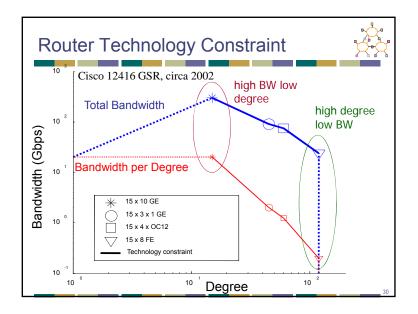
Does Internet graph have these properties?

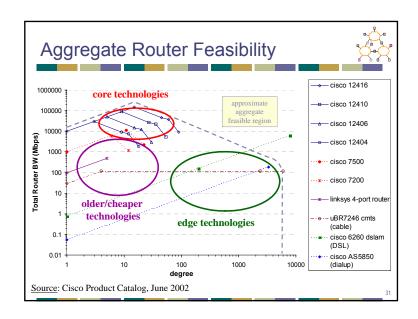
- Emphasis on degree distribution structure ignored
- Real Internet very structured
- · Evolution of graph is highly constrained

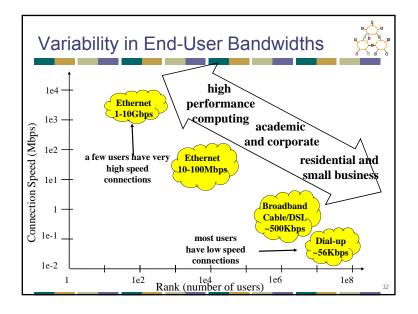
Problem With Power Law

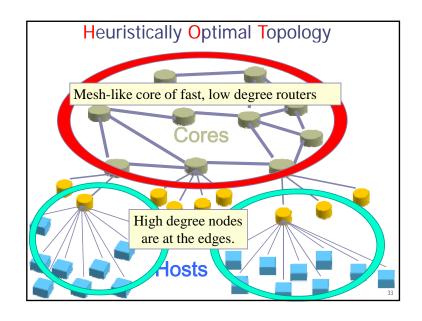
- ... but they're descriptive models!
- No correct physical explanation, need an understanding of:
 - the driving force behind deployment
 - · the driving force behind growth

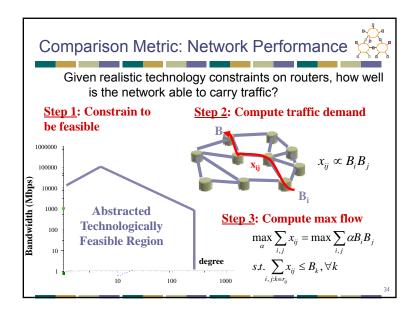
Outline

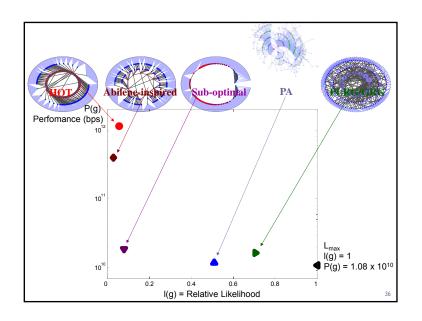


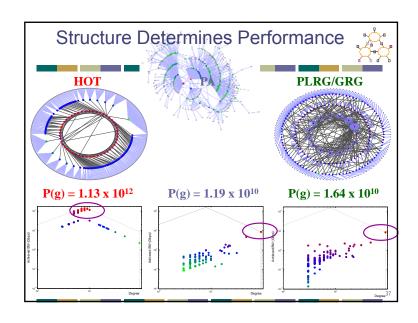

- Motivation/Background
- Power Laws
- Optimization Models
- Measuring Topology


Li et al.




- · Consider the explicit design of the Internet
 - Annotated network graphs (capacity, bandwidth)
 - · Technological and economic limitations
 - · Network performance
- Seek a theory for Internet topology that is explanatory and not merely descriptive.
 - · Explain high variability in network connectivity
 - Ability to match large scale statistics (e.g. power laws) is only secondary evidence




Likelihood-Related Metric

Define the metric $L(g) = \sum_{\substack{i,j \text{connected} \\ \text{connected}}} d_i d_j$ $(d_i = \text{degree of node } i)$

- · Easily computed for any graph
- Depends on the structure of the graph, not the generation mechanism
- · Measures how "hub-like" the network core is
- Graphs that connect nodes with high (low) degree will have high value
- · Used here to distinguish between different graphs
 - Has a more specific meaning in the context of the general model of random graphs

Outline

- · Motivation/Background
- Power Laws
- · Optimization Models
- Measuring Topology
 - · Slides John Wright

Summary Network Topology

- Faloutsos³ [SIGCOMM99] on Internet topology
 - Observed many "power laws" in the Internet structure
 - Router level connections, AS-level connections, neighborhood sizes
 - Power law observation refuted later, Lakhina [INFOCOM00]
- Inspired many degree-based topology generators
 - Compared properties of generated graphs with those of measured graphs to validate generator
 - What is wrong with these topologies? Li et al [SIGCOMM04]
 - · Many graphs with similar distribution have different properties
 - Random graph generation models don't have network-intrinsic meaning
 - Should look at fundamental trade-offs to understand topology
 Technology constraints and economic trade-offs
 - Graphs arising out of such generation better explain topology and its properties, but are unlikely to be generated by random processes!

Announcements

- · No lecture Friday and Monday
- Next course segment is on overlay networks and future Internet architecture
 - Readings are up to date for the semester
 - May need to reshuffle final few lectures a bit
- Project update: good progress but need to become more concrete quickly
 - · What will be your initial results?
 - Timeline for the remaining seven weeks?
 - Short reports on status by Oct 28 (e-mail)

40