15-744: Computer Networking

L-09 Wireless in the Real World

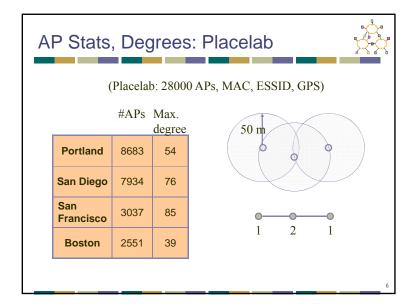
Wireless Challenges

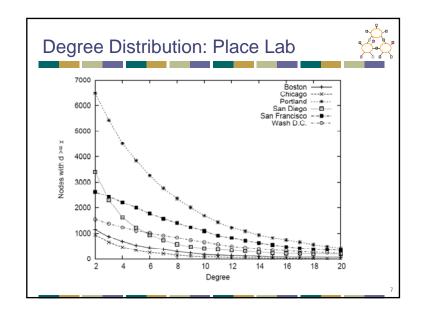
- Force us to rethink many assumptions
- Need to share airwaves rather than wire
 - Don't know what hosts are involved
 - Host may not be using same link technology
- Mobility
- · Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - · Interaction of multiple transmitters at receiver
 - · Collisions, capture, interference
 - · Multipath interference

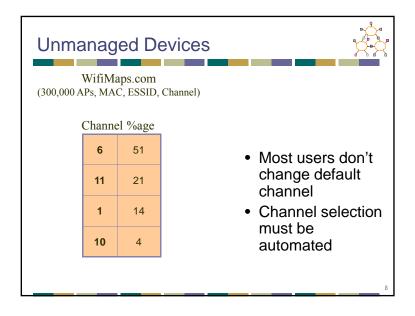
Wireless in the Real World

- Real world deployment patterns
- Mesh networks and deployments
- Assigned reading
 - White Space Networking with Wi-Fi like Connectivity
 - Architecture and Evaluation of an Unplanned 802.11b Mesh Network (2 sections)
- Optional reading
 - Self Management in Chaotic Wireless Deployments

Overview




- 802.11
 - · Deployment patterns
 - Reaction to interference
 - · See slides Alex Beutel
- Mesh networks
 - Architecture
 - Measurements
- White space networks


Characterizing Current Deployments

- Datasets
- Place Lab: 28,000 APs
 - MAC, ESSID, GPS
 - · Selected US cities
 - www.placelab.org
- Wifimaps: 300,000 APs
 - MAC, ESSID, Channel, GPS (derived)
 - · wifimaps.com
- Pittsburgh Wardrive: 667 APs
 - MAC, ESSID, Channel, Supported Rates, GPS

Growing Interference in Unlicensed Bands ¹

- Anecdotal evidence of problems, but how severe?
- Characterize how 802.11 operates under interference in practice

Interference Management

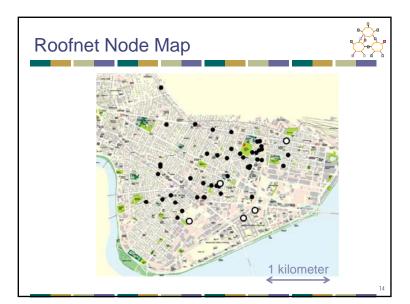
- Interference will get worse
 - Density/device diversity is increasing
 - Unlicensed spectrum is not keeping up
- Spectrum management
 - "Channel hopping" 802.11 effective at mitigating some performance problems [Sigcomm07]
 - Coordinated spectrum use based on RF sensor network
- Transmission power control
 - Enable spatial reuse of spectrum by controlling transmit power
 - Must also adapt carrier sense behavior to take advantage

10

Overview

- 802.11
 - Deployment patterns
 - Reaction to interference
- Mesh networks
 - Architecture
 - Measurements
 - See slides Joao
- White space networks

Roofnet


- Share a few wired Internet connections
- Goals
 - Operate without extensive planning or central management
 - Provide wide coverage and acceptable performance
- Design decisions
 - Unconstrained node placement
 - Omni-directional antennas
 - Multi-hop routing
 - Optimization of routing for throughput in a slowly changing network

12

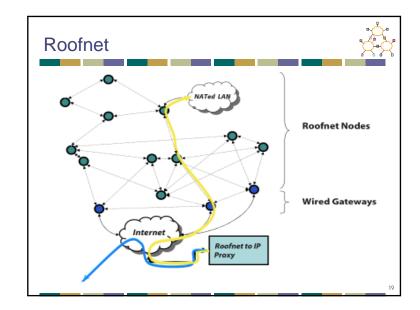
Roofnet Design

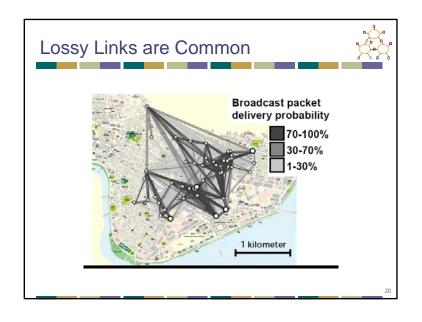
- Deployment
 - Over an area of about four square kilometers in Cambridge, Messachusetts
 - Most nodes are located in buildings
 - 3~4 story apartment buildings
 - 8 nodes are in taller buildings
 - · Each Rooftnet node is hosted by a volunteer user
- Hardware
 - PC, omni-directional antenna, hard drive ...
 - 802.11b card
 - RTS/CTS disabled
 - Share the same 802.11b channel
 - Non-standard "pseudo-IBSS" mode
 - Similar to standard 802.11b IBSS (ad hoc)
 - Omit beacon and BSSID (network ID)

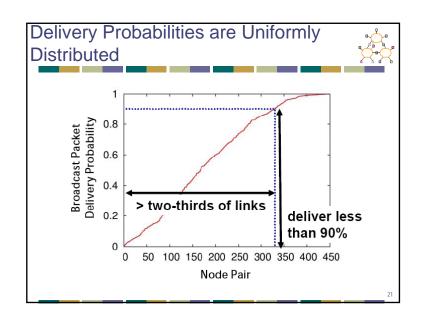
Typical Rooftop View

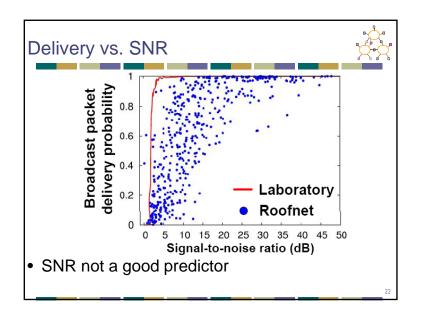
Software and Auto-Configuration

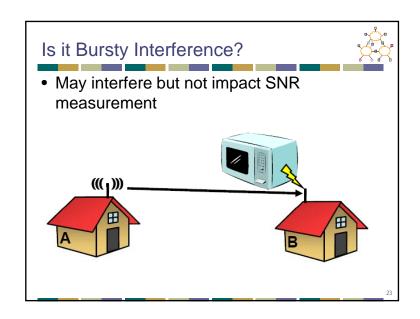
- Linux, routing software, DHCP server, web server ...
- Automatically solve a number of problems
 - · Allocating addresses
 - Finding a gateway between Roofnet and the Internet
 - Choosing a good multi-hop route to that gateway
- Addressing
 - Roofnet carries IP packets inside its own header format and routing protocol
 - · Assign addresses automatically
 - Only meaningful inside Roofnet, not globally routable
 - The address of Roofnet nodes
 - Low 24 bits are the low 24 bits of the node's Ethernet address
 - High 8 bits are an unused class-A IP address block
 - · The address of hosts
 - Allocate 192.168.1.x via DHCP and use NAT between the Ethernet and Roofnet

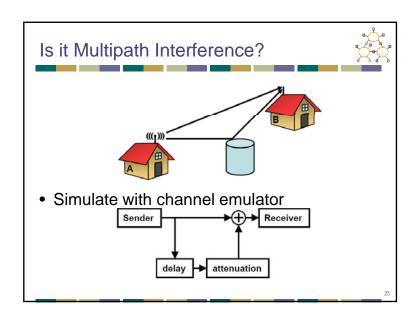

17

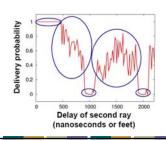

Software and Auto-Configuration

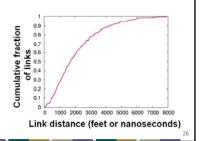



- Gateway and Internet Access
 - A small fraction of Roofnet users will share their wired Internet access links
 - Nodes which can reach the Internet
 - · Advertise itself to Roofnet as an Internet gateway
 - Acts as a NAT for connection from Roofnet to the Internet
 - Other nodes
 - Select the gateway which has the best route metric
 - Roofnet currently has four Internet gateways


18







A Plausible Explanation

- Multi-path can produce intermediate loss rates
- Appropriate multi-path delay is possible due to long-links

Key Implications

- · Lack of a link abstraction!
 - Links aren't on or off... sometimes in-between
- Protocols must take advantage of these intermediate quality links to perform well
- How unique is this to Roofnet?
 - Cards designed for indoor environments used outdoors

Roofnet Design - Routing Protocol

- Srcr
 - Find the highest throughput route between any pair of Roofnet nodes
 - Source-routes data packets like DSR
 - Maintains a partial database of link metrics
- Learning fresh link metrics
 - · Forward a packet
 - · Flood to find a route
 - · Overhear queries and responses
- Finding a route to a gateway
 - · Each Roofnet gateway periodically floods a dummy query
 - When a node receives a new query, it adds the link metric information.
 - The node computes the best route
 - · The node re-broadcasts the query
 - Send a notification to a failed packet's source if the link condition is changed

28

Roofnet Design

- Routing Metric
 - ETT (Estimated Transmission Time) metric
- $t = \frac{1}{\sum_{i} \frac{1}{t_i}}$

- Srcr chooses routes with ETT
- Predict the total amount of time it would take to send a data packet
- Take into account link's highest-throughput transmit bit-rate and delivery probability
- Each Roofnet node sends periodic 1500-byte broadcasts
- Bit-rate Selection
 - 802.11b transmit bit-rates
 - 1, 2, 5.5, 11 Mbits/s
 - SampleRate
 - Judge which bit-rate will provide the highest throughput
 - Base decisions on actual data transmission
 - · Periodically sends a packet at some other bit-rate

29

ETX measurement results

- Delivery is probabilistic
 - A 1/r^2 model wouldn't really predict this!
 - Sharp cutoff (by spec) of "good" vs "no" reception.
 Intermediate loss range band is just a few dB wide!
- Why?
 - Biggest factor: Multi-path interference
 - 802.11 receivers can suppress reflections < 250ns
 - Outdoor reflections delay often > 1 \mu sec
 - Delay offsets == symbol time look like valid symbols (large interferece)
 - Offsets != symbol time look like random noise
 - Small changes in delay == big changes in loss rate

Deciding Between Links

- Most early protocols: Hop Count
 - Link-layer retransmission can mask some loss
 - But: a 50% loss rate means your link is only 50% as fast!
- Threshold?
 - Can sacrifice connectivity. 🕾
 - Isn't a 90% path better than an 80% path?
- Real life goal: Find highest throughput paths

Is there a better metric?

- Cut-off threshold
 - Disconnected network
- Product of link delivery ratio along path
 - Does not account for inter-hop interference
- Bottleneck link (highest-loss-ratio link)
 - Same as above
- End-to-end delay
 - Depends on interface queue lengths

ETX Metric Design Goals

- Find high throughput paths
- · Account for lossy links
- · Account for asymmetric links
- Account for inter-link interference
- Independent of network load (don't incorporate congestion)

Forwarding Packets is Expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- What is throughput of a chain?
 - \bullet A \rightarrow B \rightarrow C
 - $\bullet A \rightarrow B \rightarrow C \rightarrow D$?
 - Assume minimum power for radios.
- Routing metric should take this into account! Affects throughput

ETX

- Measure each link's delivery probability with broadcast probes (& measure reverse)
- P(delivery) = (d_f * d_r) (ACK must be delivered too...)
- Link ETX = 1 / P(delivery)
- Route ETX = Σ link ETX
 - Assumes all hops interfere not true, but seems to work okay so far

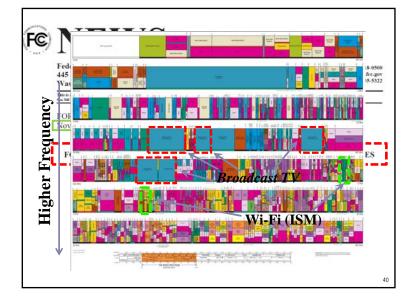
ETX: Sanity Checks

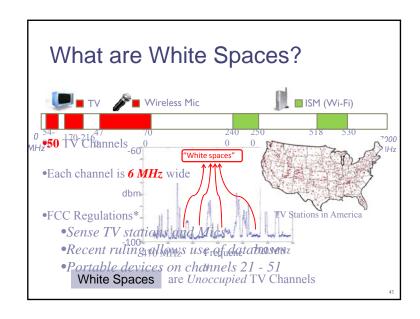
- ETX of perfect 1-hop path: 1
- ETX of 50% delivery 1-hop path: 2
- ETX of perfect 3-hop path: 3
- (So, e.g., a 50% loss path is better than a perfect 3-hop path! A threshold would probably fail here...)

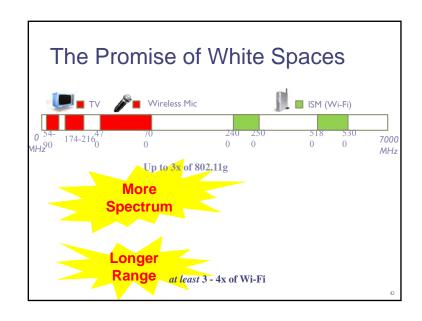
Rate Adaptation

- What if links @ different rates?
- ETT expected transmission time
 - ETX / Link rate = 1 / (P(delivery) * Rate)
- What is best rate for link?
 - The one that maximizes ETT for the link!
 - SampleRate is a technique to adaptively figure this out.

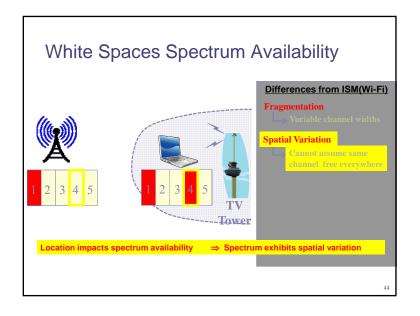
Discussion




- Value of implementation & measurement
 - Simulators did not "do" multipath
 - Routing protocols dealt with the simulation environment just fine
 - Real world behaved differently and really broke a lot of the proposed protocols that worked so well in simulation!
- Rehash: Wireless differs from wired...
- Metrics: Optimize what matters; hop count often a very bad proxy in wireless
- What we didn't look at: routing protocol overhead
 - One cool area: Geographic routing


Overview




- 802.11
 - · Deployment patterns
 - Reaction to interference
- Mesh networks
 - Architecture
 - Measurements
- White space networks

