

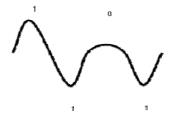
Wireless Intro

- TCP on wireless links
- Wireless MAC
- Assigned reading
 - [BM09] In Defense of Wireless Carrier Sense
 - [BPSK97] A Comparison of Mechanism for Improving TCP Performance over Wireless Links (2 sections)
- Optional
 - [BDS+94] MACAW: A Media Access Protocol for Wireless LAN's

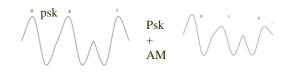
Wireless Challenges

- Force us to rethink many assumptions
- Need to share airwaves rather than wire
 - Don't know what hosts are involved
 - · Host may not be using same link technology
- Mobility
- · Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - · Interaction of multiple transmitters at receiver
 - · Collisions, capture, interference
 - · Multipath interference

Overview


- Wireless Background
 - Review
- Wireless MAC
 - MACAW
 - 802.11
- Wireless TCP

Transmission Channel Considerations Every medium supports transmission in a certain Good Bad frequency range. · Outside this range, effects such as attenuation, .. degrade the signal Transmission and receive hardware will try to maximize the useful bandwidth in this frequency band. Frequency • Tradeoffs between cost, distance, bit rate • As technology improves, these parameters change, even for the same wire. · Thanks to our EE friends


- A noiseless channel of width H can at most transmit a binary signal at a rate 2 x H.
 - E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second
 - · Assumes binary amplitude encoding

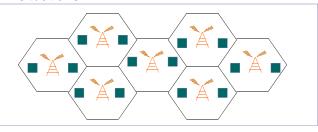
Past the Nyquist Limit

- More aggressive encoding can increase the channel bandwidth.
 - Example: modems
 - Same frequency number of symbols per second
 - Symbols have more possible values

Capacity of a Noisy Channel

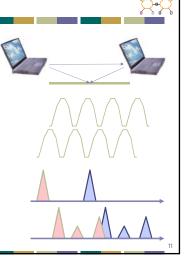
- Can't add infinite symbols you have to be able to tell them apart. This is where noise comes in.
- Shannon's theorem:
 - $C = B \times log(1 + S/N)$
 - · C: maximum capacity (bps)
 - B: channel bandwidth (Hz)
 - · S/N: signal to noise ratio of the channel
 - Often expressed in decibels (db). 10 log(S/N).
- Example:
 - Local loop bandwidth: 3200 Hz
 - Typical S/N: 1000 (30db)
 - What is the upper limit on capacity?
 - Modems: Teleco internally converts to 56kbit/s digital signal, which sets a limit on B and the S/N.

Free Space Loss


Loss =
$$P_t / P_r = (4\pi d)^2 / (G_r G_t \lambda^2)$$

- Loss increases quickly with distance (d²).
- Need to consider the gain of the antennas at transmitter and receiver.
- Loss depends on frequency: higher loss with higher frequency.
 - But careful: antenna gain depends on frequency too
 - For fixed antenna area, loss decreases with frequency
 - Can cause distortion of signal for wide-band signals

Cellular Reuse


- Transmissions decay over distance
 - Spectrum can be reused in different areas
 - Different "LANs"
 - Decay is 1/R² in free space, 1/R⁴ in some situations

Multipath Effects

- Receiver receives multiple copies of the signal, each following a different path
- Copies can either strengthen or weaken each other.
 - Depends on whether they are in our out of phase
- Small changes in location can result in big changes in signal strength.
 - Short wavelengths, e.g. 2.4 GHz

 → 12 cm
- Difference in path length can cause inter-symbol interference
 (ISI)

Overview

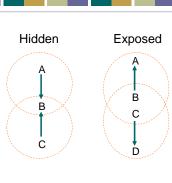
- Wireless Background
- Wireless MAC
 - MACAW
 - 802.11
- Wireless TCP

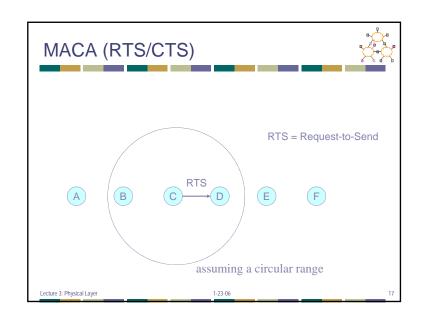
Medium Access Control

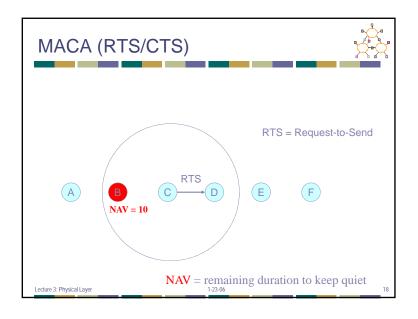
- Think back to Ethernet MAC:
 - · Wireless is a shared medium
 - Transmitters interfere
 - Need a way to ensure that (usually) only one person talks at a time.
 - Goals: Efficiency, possibly fairness

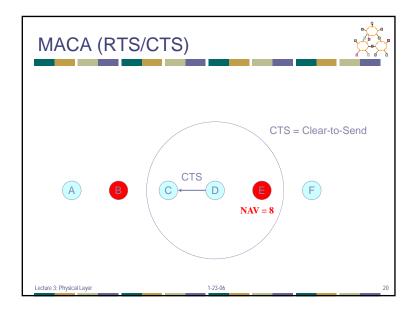
14

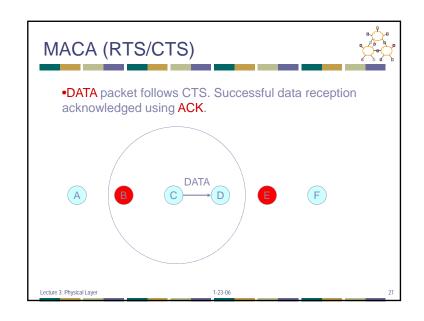
Example MAC Protocols

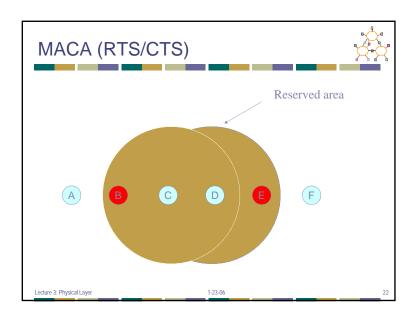


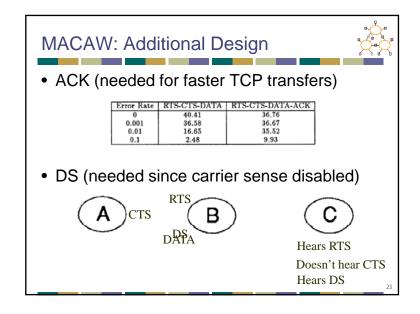

- Pure ALOHA
 - Transmit whenever a message is ready
 - · Retransmit when ACK is not received
- Slotted ALOHA
 - Time is divided into equal time slots
 - Transmit only at the beginning of a time slot
 - · Avoid partial collisions
 - · Increase delay, and require synchronization
- Carrier Sense Multiple Access (CSMA)
 - · Listen before transmit
 - · Transmit only when no carrier is detected

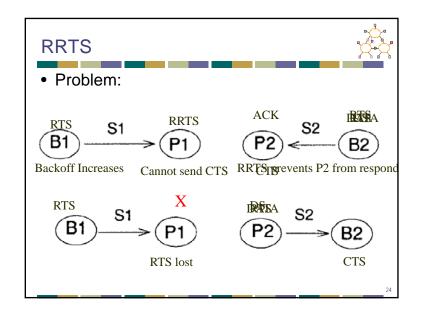

CSMA/CD Does Not Work


- Carrier sense problems
 - Relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal
- Collision detection problems
 - Hard to build a radio that can transmit and receive at same time









MACAW: Conclusions

- 8% extra overhead for DS and ACK
- 37% improvement in congestion

MACA	RTS-CTS-DATA	53.07
MACAW	RTS-CTS-DS-DATA-ACK	49.07

Table 9: The throughput, in packets per second, achieved by a uncontested single stream.

23

Overview

- · Wireless Background
- Wireless MAC
 - MACAW
 - 802.11
- Wireless TCP

26

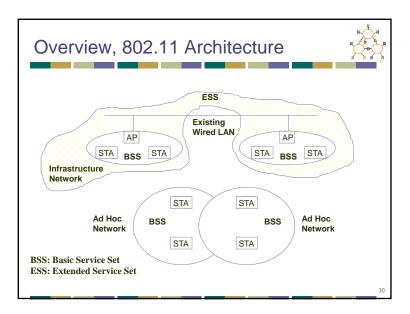
IEEE 802.11 Overview

• Adopted in 1997

Defines:

- MAC sublayer
- MAC management protocols and services
- Physical (PHY) layers
 - IR
 - FHSS
 - DSSS

802.11 particulars



- 802.11b (WiFi)
 - Frequency: 2.4 2.4835 Ghz DSSS
 - Modulation: DBPSK (1Mbps) / DQPSK (faster)
 - Orthogonal channels: 3
 - There are others, but they interfere. (!)
 - Rates: 1, 2, 5.5, 11 Mbps
- 802.11a: Faster, 5Ghz OFDM. Up to 54Mbps, 19+ channels
- 802.11g: Faster, 2.4Ghz, up to 54Mbps
- 802.11n: 2.4 or 5Ghz, multiple antennas (MIMO), up to 450Mbps (for 3x3 antenna configuration)

802.11 details

- Preamble
 - 72 bits @ 1Mbps, 48 bits @ 2Mbps
 - Note the relatively high per-packet overhead
- Control frames
 - RTS/CTS/ACK/etc.
- Management frames
 - Association request, beacons, authentication, etc.

802.11 modes

- Infrastructure mode
 - All packets go through a base station
 - Cards associate with a BSS (basic service set)
 - Multiple BSSs can be linked into an Extended Service Set (ESS)
 - Handoff to new BSS in ESS is pretty quick
 Wandering around CMU
 - Moving to new ESS is slower, may require readdressing
 - Wandering from CMU to Pitt
- Ad Hoc mode
 - · Cards communicate directly.
 - Perform some, but not all, of the AP functions

802.11 Management Operations

- Scanning
- Association/Reassociation
- Time synchronization
- Power management

Scanning & Joining

- · Goal: find networks in the area
- Passive scanning
 - No require transmission → saves power
 - Move to each channel, and listen for Beacon frames
- Active scanning
 - Requires transmission → saves time
 - Move to each channel, and send Probe Request frames to solicit Probe Responses from a network

1: Association request

2: Association response

3: Data traffic

Association in 802.11

Time Synchronization in 802.11

- Timing synchronization function (TSF)
 - AP controls timing in infrastructure networks
 - · All stations maintain a local timer
 - TSF keeps timer from all stations in sync
- Periodic Beacons convey timing
 - Beacons are sent at well known intervals
 - Timestamp from Beacons used to calibrate local clocks
 - Local TSF timer mitigates loss of Beacons

Power Management in 802.11

AP

- A station is in one of the three states
 - Transmitter on
 - Receiver on

Client

- Both transmitter and receiver off (dozing)
- AP buffers packets for dozing stations
- AP announces which stations have frames buffered in its Beacon frames
- Dozing stations wake up to listen to the beacons
- If there is data buffered for it, it sends a poll frame to get the buffered data

IEEE 802.11 Wireless MAC

- Support broadcast, multicast, and unicast
 - Uses ACK and retransmission to achieve reliability for unicast frames
 - No ACK/retransmission for broadcast or multicast frames
- Distributed and centralized MAC access
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)

802.11 DCF (CSMA)

- Distributed Coordination Function (CSMA/CA)
- Sense medium. Wait for a DIFS (50 μs)
- If busy, wait 'till not busy. Random backoff.
- If not busy, Tx.
- · Backoff is binary exponential
- Acknowledgements use SIFS (short interframe spacing). 10 μs.
 - Short spacing makes exchange atomic

Station 1 Station 2 Station 3 Station 4 Station 5 Station 5 Station 6 Station 6 Station 6 Station 6 Station 6 Station 7 Station 7 Station 8 Station 8 Station 9 Station 9

Discussion

- RTS/CTS/Data/ACK vs. Data/ACK
 - Why/when is it useful?
 - What is the right choice
 - Why is RTS/CTS not used?

802.11 Rate Adaptation

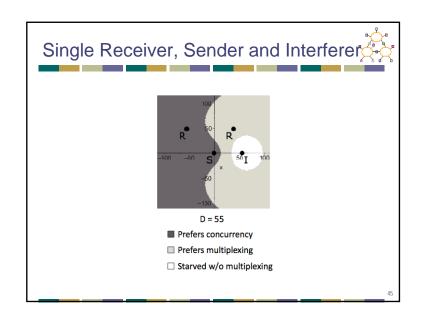
- 802.11 spec specifies rates not algorithm for choices
 - 802.11b 4 rates, 802.11a 8 rates, 802.11g 12 rates
 - Each rate has different modulation and coding

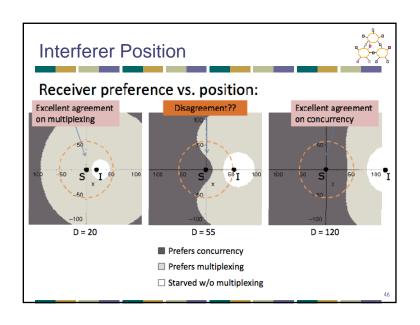
Transmission Rate

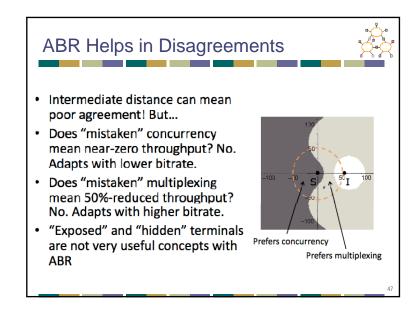
then Loss Ratio

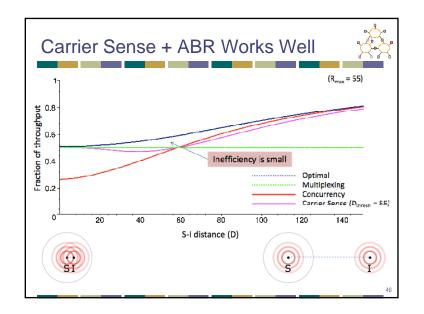
Transmission Rate then Capacity Utilization

throughput decreases either way – need to get it just right


Auto Bit Rate (ABR) Algorithms




- Probe Packets
 - ARF
 - AARF
 - SampleRate
- · Consecutive successes/losses
 - ARF
 - AARF
 - Hybrid Algorithm
- Physical Layer metrics
 - Hybrid Algorithm
 - RBAR
 - OAR
- Long-term statistics
 - ONOE
- SINR
 - Charm


Carrier Sense Desired result: concurrency Desired result: time-multiplexing Desired result: ???

Maybe Carrier Sense is Fine? "Far" interference: - Small distance variation: $\Delta r_1 \approx \Delta r_2$ "Near" interference: - Nobody wants concurrency; SINR_{concurrent} <<< SNR_{multiplexing} · In both cases, all receivers agree on preferring either multiplexing or concurrency - "Agreement" means CS can perform well Intermediate distance will be the hard case · Also, shadows and obstacles?

Key Assumptions

- ABR == Shannon
 - · ABR is rarely this good
- Interference and ABR are both stable
 - Interference may be bursty/intermittent

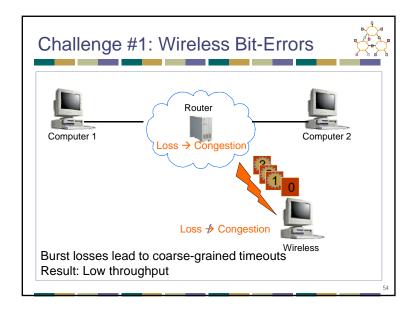
Overview

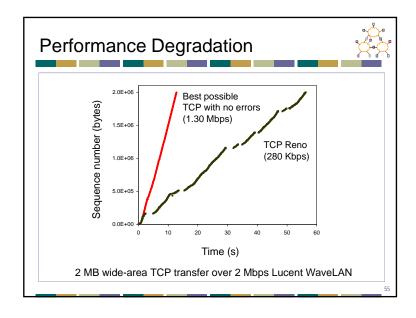
- · Wireless Background
- Wireless MAC
 - MACAW
 - 802.11
- Wireless TCP

Wireless Challenges

- Force us to rethink many assumptions
- · Need to share airwaves rather than wire
 - Don't know what hosts are involved
 - · Host may not be using same link technology
- Mobility
- · Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - · Interaction of multiple transmitters at receiver
 - · Collisions, capture, interference
 - · Multipath interference

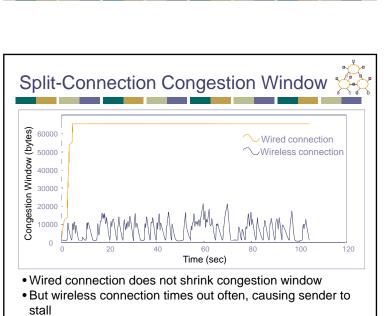
TCP Problems Over Noisy Links



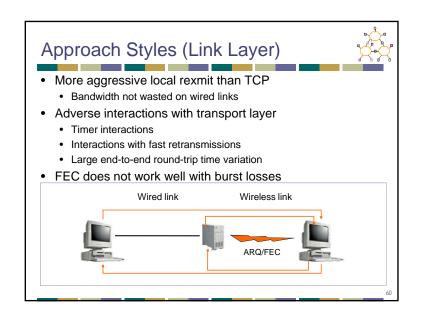

- Wireless links are inherently error-prone
 - Fades, interference, attenuation
 - Errors often happen in bursts
- TCP cannot distinguish between corruption and congestion
 - TCP unnecessarily reduces window, resulting in low throughput and high latency
- Burst losses often result in timeouts
- Sender retransmission is the only option
 - · Inefficient use of bandwidth

Constraints & Requirements

- Incremental deployment
 - Solution should not require modifications to fixed hosts
 - If possible, avoid modifying mobile hosts
- Probably more data to mobile than from mobile
 - Attempt to solve this first



Proposed Solutions



- End-to-end protocols
 - Selective ACKs, Explicit loss notification
- Split-connection protocols
 - Separate connections for wired path and wireless hop
- Reliable link-layer protocols
 - Error-correcting codes
 - Local retransmission

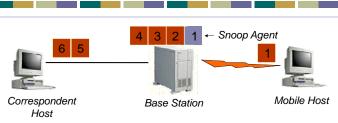
Approach Styles (End-to-End) • Improve TCP implementations • Not incrementally deployable • Improve loss recovery (SACK, NewReno) • Help it identify congestion (ELN, ECN) • ACKs include flag indicating wireless loss • Trick TCP into doing right thing → E.g. send extra dupacks • What is SMART? • DUPACK includes sequence of data packet that triggered it Wired link Wireless link

Approach Styles (Split Connection) Split connections Wireless connection need not be TCP Hard state at base station Complicates mobility Vulnerable to failures Violates end-to-end semantics Wireless link Wireless link

Hybrid Approach: Snoop Protocol

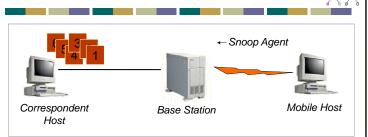
- Shield TCP sender from wireless vagaries
 - Eliminate adverse interactions between protocol layers
 - Congestion control only when congestion occurs
- The End-to-End Argument [SRC84]
 - Preserve TCP/IP service model: end-to-end semantics
 - Is connection splitting fundamentally important?
- Eliminate non-TCP protocol messages
 - Is link-layer messaging fundamentally important?

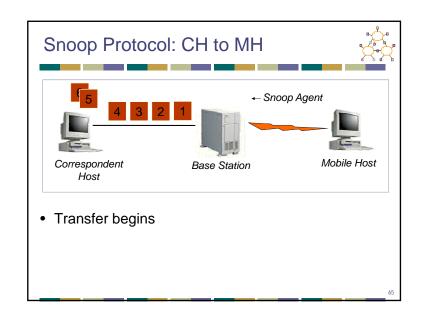
Fixed to mobile: transport-aware link protocol Mobile to fixed: link-aware transport protocol

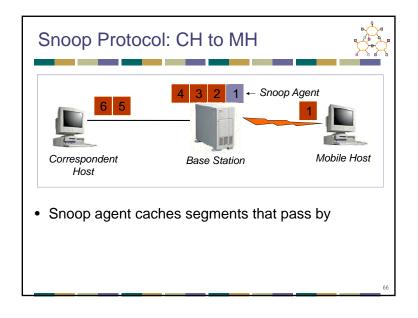

Snoop Overview

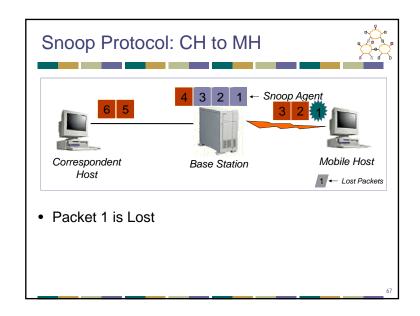
- Modify base station
 - to cache un-acked TCP packets
 - ... and perform local retransmissions
- Key ideas
 - No transport level code in base station
 - When node moves to different base station, state eventually recreated there

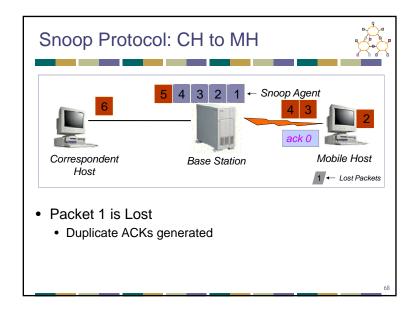
62

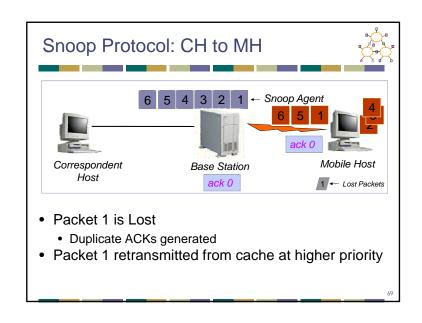

Snoop Protocol: CH to MH


- Snoop agent: active interposition agent
 - Snoops on TCP segments and ACKs
 - Detects losses by duplicate ACKs and timers
 - Suppresses duplicate ACKs from MH


...


Snoop Protocol: CH to MH




- Transfer of file from CH to MH
- Current window = 6 packets

