I 15-744: Computer Networking I

L-5 Fair Queuing

By 8
o 2N,
-8

T

Fair Queuing Sy

 Fair Queuing
» Core-stateless Fair queuing

» Assigned reading
* Analysis and Simulation of a Fair Queueing
Algorithm, Internetworking: Research and
Experience
» Congestion Control for High Bandwidth-Delay
Product Networks (XTP - 2 sections)

Announcements ey
* Project proposals: please e-mail!

» Before/during/after class is fine
» Bin Fan will likely be back next week
* Change in lecture schedule:

* Friday: Router design

* Monday: Router algorithms

» Another volunteer for presentation?

Overview i)

* TCP and queues

* Queuing disciplines
* RED

* Fair-queuing

+ Core-stateless FQ

+ XCP

Example e

* 10Gb/s linecard

* Requires 300Mbytes of buffering.

* Read and write 40 byte packet every 32ns.
* Memory technologies

* DRAM: require 4 devices, but too slow.

« SRAM: require 80 devices, 1kW, $2000.
* Problem gets harder at 40Gb/s

* Hence RLDRAM, FCRAM, etc.

If flows are synchronized -y

2 Wo

. W
2

melx

w W\

T

* Aggregate window has same dynamics
» Therefore buffer occupancy has same dynamics
* Rule-of-thumb still holds.

Rule-of-thumb ey
* Rule-of-thumb makes sense for one flow
» Typical backbone link has > 20,000 flows
* Does the rule-of-thumb still hold?
By £ A
If flows are not synchronized YhS
< N d v
= o === = F === =
. .
O W >
Blitar Siz;":ﬂ Probability
w | Distribution

Central Limit Theorem e
» CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)
- Width of Gaussian decreases with —— 1

N

« Buffer size should also decreases with vn

B %:2T><C

Vnon

AP
'
Y

»
Y

Overview ey

* TCP and queues

* Queuing disciplines
+ RED

* Fair-queuing

+ Core-stateless FQ

+ XCP

Required buffer size Sy
H b
= 7 Minimum Required Butfer o Achieve 95% Goodput B
rs Minimum Required Buffer [Pkis] +
e |
100
5
é 20
5 -
E H&‘! 2T xC
] s
£ %, Jn
5 -
= o
b .
40 i oL
P
20 - - N e e T ——
Simulation
0 1 L L . .
0 50 100 150 200 250 300
Number of TCP flows
10
?
By A
. e . A%
q [}
Queuing Disciplines 3]
— —

« Each router must implement some queuing
discipline

* Queuing allocates both bandwidth and
buffer space:

+ Bandwidth: which packet to serve (transmit)
next
 Buffer space: which packet to drop next (when
required)
* Queuing also affects latency

Typical Internet Queuing e

* FIFO + drop-tail
» Simplest choice
» Used widely in the Internet
* FIFO (first-in-first-out)
 Implies single class of traffic
* Drop-tail
* Arriving packets get dropped when queue is full
regardless of flow or importance

* Important distinction:
* FIFO: scheduling discipline
» Drop-tail: drop policy

. . Y
Packet Drop Dimensions jesey
Aggregation)
Per-connection state Single class
‘ Class-based queuing
Drop position .
Head Tail
‘ Random location
Early drop Overflow drop
13
By 2 A
. A%
FIFO + Drop-tail Problems jCey

* Leaves responsibility of congestion control
to edges (e.g., TCP)
* Does not separate between different flows

* No policing: send more packets - get more
service

» Synchronization: end hosts react to same
events

15

2

»

Mo

Active Queue Management X

» Design active router queue management to
aid congestion control
* Why?
* Routers can distinguish between propagation
and persistent queuing delays

* Routers can decide on transient congestion,
based on workload

.
/5 R s
e

Y d b

Active Queue Designs o

* Modify both router and hosts
» DECbit — congestion bit in packet header

* Modify router, hosts use TCP
* Fair queuing
» Per-connection buffer allocation
* RED (Random Early Detection)

» Drop packet or set bit in packet header as soon as
congestion is starting

17

Overview Y

+ TCP and queues

* Queuing disciplines
+ RED

+ Fair-queuing

« Core-stateless FQ

Internet Problems jo5ey

* Full queues
* Routers are forced to have have large queues
to maintain high utilizations

» TCP detects congestion from loss

* Forces network to have long standing queues in
steady-state

* Lock-out problem
* Drop-tail routers treat bursty traffic poorly

* Traffic gets synchronized easily > allows a few
flows to monopolize the queue space

19

+ XCP
Design Objectives s

» Keep throughput high and delay low
* Accommodate bursts

* Queue size should reflect ability to accept
bursts rather than steady-state queuing

* Improve TCP performance with minimal
hardware changes

Lock-out Problem o)

* Random drop
» Packet arriving when queue is full causes some
random packet to be dropped
* Drop front
* On full queue, drop packet at head of queue

* Random drop and drop front solve the lock-
out problem but not the full-queues problem

21

Full Queues Problem SSey

» Drop packets before queue becomes full
(early drop)

* Intuition: notify senders of incipient
congestion

» Example: early random drop (ERD):
« If glen > drop level, drop each new packet with fixed
probability p
» Does not control misbehaving users

Random Early Detection (RED) jog ey

. Detect |nC|p|ent congestlon, aIIow bursts

+ Keep power (throughput/delay) high
» Keep average queue size low
» Assume hosts respond to lost packets

Avoid window synchronization

* Randomly mark packets

Avoid bias against bursty traffic

Some protection against ill-behaved users

23

2

o

B,
ay Loy

RED Algorlthm)

. Malntaln runnlng average of queue length
* If avgq < miny, do nothing

» Low queuing, send packets through
+ If avgq > max,, drop packet

* Protection from misbehaving sources
* Else mark packet in a manner proportional

to queue length

* Notify sources of incipient congestion

1

L]

RED Algorithm e

Y

N ?

e
i vd b
— _— _—]

LN

» Maintain running average of queue length
» Byte mode vs. packet mode — why?

* For each packet arrival
» Calculate average queue size (avg)
* If ming, < avgq < max,
+ Calculate probability P,
» With probability P,
» Mark the arriving packet

* Else if maxy, < avg
» Mark the arriving packet

RED Operation S
Max thresh Min thresh
Average Queue Length
P(drop)A
1.0
maxp
miny, ma‘xm Avg queue length
25
By 2 A

Queue Estimati Ay
ueue Estimation o 2o

« Standard EWMA: avgq = (1-w,) avgq + w,glen

+ Special fix for idle periods — why?
* Upper bound on w, depends on miny,

» Want to ignore transient congestion

+ Can calculate the queue average if a burst arrives

* Set w, such that certain burst size does not exceed miny,
* Lower bound on w, to detect congestion relatively
quickly

* Typical w, = 0.002

27

Thresholds

* miny, determined by the utilization
requirement
 Tradeoff between queuing delay and utilization
* Relationship between max,, and min,

» Want to ensure that feedback has enough time
to make difference in load

» Depends on average queue increase in one
RTT

» Paper suggest ratio of 2
 Current rule of thumb is factor of 3

Packet Marking

* max, is reflective of typical loss rates

» Paper uses 0.02
* 0.1 is more realistic value

* If network needs marking of 20-30% then
need to buy a better link!

» Gentle variant of RED (recommended)

* Vary drop rate from max; to 1 as the avgq
varies from maxy, to 2* maxy,

* More robust to setting of max,, and max,

29

Extending RED for Flow Isolation |

* Problem: what to do with non-cooperative
flows?

* Fair queuing achieves isolation using per-
flow state — expensive at backbone routers

* How can we isolate unresponsive flows without
per-flow state?

* RED penalty box

» Monitor history for packet drops, identify flows
that use disproportionate bandwidth

* Isolate and punish those flows

Overview

* TCP and queues

* Queuing disciplines
+ RED

* Fair-queuing

+ Core-stateless FQ

+ XCP

31

N4
Sy

Fairness Goals X

* Allocate resources fairly

 |solate ill-behaved users

* Router does not send explicit feedback to
source

« Still needs e2e congestion control
« Still achieve statistical muxing
» One flow can fill entire pipe if no contenders

* Work conserving = scheduler never idles link if
it has a packet

o a

What is Fairness? o

+ At what granularity?
* Flows, connections, domains?
* What if users have different RTTs/links/etc.
» Should it share a link fairly or be TCP fair?
» Maximize fairness index?
+ Fairness = (2x;)?/n(£x?) O<fairness<1
» Basically a tough question to answer — typically
design mechanisms instead of policy
* User = arbitrary granularity

33

w
Y

Max-min Fairness v

» Allocate user with “small” demand what it
wants, evenly divide unused resources to

“big” users

* Formally:
* Resources allocated in terms of increasing demand

* No source gets resource share larger than its
demand

 Sources with unsatisfied demands get equal share
of resource

o
LN
o’y

Max-min Fairness Example Jey

* Assume sources 1..n, with resource
demands X1..Xn in ascending order

» Assume channel capacity C.

¢ Give C/n to X1; if this is more than X1 wants,
divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

* If this is larger than what X2 wants, repeat
process

35

Max-Min Fair Sharing Example j@;
C_chsc rl
Mir = —————
nhere
— E >
N

Assume 10 Mbs links

Implementing max-min Fairness Sy

» Generalized processor sharing
* Fluid fairness
+ Bitwise round robin among all queues
* Why not simple round robin?
» Variable packet length > can get more service
by sending bigger packets
» Unfair instantaneous service rate
» What if arrive just before/after packet departs?

37

w
e

LN
o g

B|t -by- blt RR o o 0
. Smgle row. clock ticks when a bit is
transmitted. For packet i:
* P, =length, A = arrival time, S, = begin transmit
time, F, = finish transmit time
* Fi=8+P; =max (Fi4, A) + P,
» Multiple flows: clock ticks when a bit from all
active flows is transmitted - round number
 Can calculate F; for each packet if number of
flows is know at all times
* This can be complicated

B|t by-bit RR IIIustratlon joye)

. Not fea3|ble to
interleave bits on
real networks

* FQ simulates bit-by- -
bit RR

39

Fair Queuing

. Mapplng b|t -by-bit schedule onto packet
transmission schedule
» Transmit packet with the lowest F; at any
given time
* How do you compute F;?

== BiE

40

10

FQ lllustration ?::%*} »

/

7/
4 »
Flow n

Variation: Weighted Fair Queuing (WFQ)

4

Bit-by-bit RR Example

&
RS
oy

F=1
F=8
F=5 Flow 1
(arriving)

Cannot preempt packet
currently being transmitted

Flow 2
transmitting

F=1

Output

42

B]

. N

I

ey
R

Fair Queuing Tradeoffs

» FQ can control congestion by monitoring flows
» Non-adaptive flows can still be a problem — why?
+ Complex state

* Must keep queue per flow
» Hard in routers with many flows (e.g., backbone routers)
» Flow aggregation is a possibility (e.g. do fairness per domain)

» Complex computation
+ Classification into flows may be hard
» Must keep queues sorted by finish times
* Finish times change whenever the flow count changes

a,
o

43

Overview

TCP and queues
Queuing disciplines
RED

Fair-queuing

Core-stateless FQ
* Not discussed in class — FYI only

XCP

z\

a
e
g
oy

44

11

Core-Stateless Fair Queuing Y

» Key problem with FQ is core routers
* Must maintain state for 1000’s of flows

» Must update state at Gbps line speeds

» CSFQ (Core-Stateless FQ) objectives
» Edge routers should do complex tasks since they have
fewer flows
» Core routers can do simple tasks
* No per-flow state/processing - this means that core routers

can only decide on dropping packets not on order of
processing

L]
a8

NP

o

L)

()'\1-
i bd b

Core-Stateless Fair Queuing

» Edge routers keep state about flows and do
computation when packet arrives
* DPS (Dynamic Packet State)

» Edge routers label packets with the result of
state lookup and computation

» Core routers use DPS and local
measurements to control processing of
packets

46

+ Can only provide max-min bandwidth fairness not delay
allocation
45
By 2 A
. AR
Edge Router Behavior VR

» Monitor each flow i to measure its arrival
rate (r;)
» EWMA of rate
* Non-constant EWMA constant
» eTKwhere T = current interarrival, K = constant
» Helps adapt to different packet sizes and arrival
patterns

* Rate is attached to each packet

47

a
/3_*’
Y

N
o a

Core Router Behavior

» Keep track of fair share rate a
* Increasing a does not increase load (F) by N *
a
* F(a) = Z; min(r;, a) = what does this look like?
* Periodically update a

» Keep track of current arrival rate
» Only update a if entire period was congested or
uncongested

» Drop probability for packet = max(1- a/r, 0)

48

12

F vs. Alpha

C [linked capacity]

— 1 i alpha
ri r2 r3 | old alpha
New alpha

49

Estimating Fair Share

* Need F(a) = capacity = C
« Can’t keep map of F(a) values - would require per
flow state
 Since F(a) is concave, piecewise-linear
» F(0) = 0 and F(a) = current accepted rate = F
* F(a)=FJ/a
* F(dyew) =C 2 Ay, = 0gg " C/F,
* What if a mistake was made?
» Forced into dropping packets due to buffer capacity

* When queue overflows a is decreased slightly

o

5
N

e

o
LN
o e

Other Issues

* Punishing fire-hoses — why?
» Easy to keep track of in a FQ scheme

» What are the real edges in such a scheme?

» Must trust edges to mark traffic accurately

» Could do some statistical sampling to see if

edge was marking accurately

51

Overview

* TCP and queues

* Queuing disciplines
* RED

* Fair-queuing

+ Core-stateless FQ

+ XCP

» See also slides by Nicolas Feltman

13

How does XCP Work? *”ﬁ'f

[

=%

R&?L Round Trip Time

Cong| Congestion Window

Congestion Header

53

How does XCP Work? '*3;

Round Trip Time

Congestion Window

How does XCP Work? *?L%

_

XCP extends ECN and CSFQ

Routers compute feedback without
any per-flow state

55

How Does an XCP Router Compute the gf‘{

Eeedback?

v
Algorithm:

Aggregate fraffic changes by A
A ~ Spare Bandwidth

A ~ - Queue Size

So, A = a d,,, Spare - f Queue

Congestion He

Algorithm:

If A>0 = Divide A equally
between flows

If A< 0O = Divide A between

flows proportionally to their
current rates

14

Getting the devil out of the details ... s?LF

Congestion Controller
A = a d,,, Spare - f Queue
Theorem: System converges
to optimal utilization (i.e.,

stable) for any link bandwidth,
delay, number of sources if:

O<a<’— and p=a’\2

W2

No Parameter Tuning

Fairness Controller

Algorithm:
If A>0 = Divide A equally between flows

If A <0 = Divide A between flows
proportionally to their current rates

Need to estimate number of
flows N

(VP P E—
pismt T x(Cwnd , /RTT)

RTT,y: Round Trip Time in header

No Per‘-Flow State

57

N
rat

Discussion s

-_RED T I o T
» Parameter settings

 REDvs. FQ

* How much do we need per flow tracking? At what cost?
FQ vs. XCP/CSFQ
* Is coarse-grained fairness sufficient?
» Misbehaving routers/trusting the edge
» Deployment (and incentives)
* How painful is FQ
+ XCP vs CSFQ
* What are the key differences
+ Granularity of fairness
* Mechanism vs. policy = will see this in QoS

o’y

Important Lessons

* How does TCP implement AIMD?
+ Sliding window, slow start & ack clocking
* How to maintain ack clocking during loss recovery

-> fast recovery

* How does TCP fully utilize a link?

* Role of router buffers

e TCP alternatives

» TCP being used in new/unexpected ways

» Key changes needed

59

15

