
1

15-744: Computer Networking

L-5 Fair Queuing

Announcements

• Project proposals: please e-mail!
• Before/during/after class is fine

• Bin Fan will likely be back next week
• Change in lecture schedule:

• Friday: Router design
• Monday: Router algorithms

• Another volunteer for presentation?

2

Fair Queuing

• Fair Queuing
• Core-stateless Fair queuingq g
• Assigned reading

• Analysis and Simulation of a Fair Queueing
Algorithm, Internetworking: Research and
Experience

• Congestion Control for High Bandwidth Delay

3

• Congestion Control for High Bandwidth-Delay
Product Networks (XTP - 2 sections)

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ

• XCP

4

2

Example

• 10Gb/s linecard
• Requires 300Mbytes of buffering.
• Read and write 40 byte packet every 32ns.

• Memory technologies
• DRAM: require 4 devices, but too slow.
• SRAM: require 80 devices, 1kW, $2000.

5

• Problem gets harder at 40Gb/s
• Hence RLDRAM, FCRAM, etc.

Rule-of-thumb
• Rule-of-thumb makes sense for one flow
• Typical backbone link has > 20,000 flows
• Does the rule-of-thumb still hold?

6

If flows are synchronized

maxW

2
maxW

t

max

2
W

maxW

7

• Aggregate window has same dynamics
• Therefore buffer occupancy has same dynamics
• Rule-of-thumb still holds.

t

If flows are not synchronized

B

0

W

Probability

0

Buffer Size

8

Probability
Distribution

Buffer Size

3

Central Limit Theorem

• CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the GaussianWindows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

• Width of Gaussian decreases with
• Buffer size should also decreases with

CTBB n 
  21

n
1

n
1

9

nn
B 

Required buffer size

2T C
n


10

Simulation

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ

• XCP

11

Queuing Disciplines

• Each router must implement some queuing
discipline

• Queuing allocates both bandwidth and
buffer space:
• Bandwidth: which packet to serve (transmit)

next
• Buffer space: which packet to drop next (when

12

• Buffer space: which packet to drop next (when
required)

• Queuing also affects latency

4

Packet Drop Dimensions

Aggregation
Per connection state Single classPer-connection state Single class

Drop position
Head Tail

Class-based queuing

13

Random location

Early drop Overflow drop

Typical Internet Queuing
• FIFO + drop-tail

• Simplest choice
• Used widely in the Internet• Used widely in the Internet

• FIFO (first-in-first-out)
• Implies single class of traffic

• Drop-tail
• Arriving packets get dropped when queue is full

regardless of flow or importance

14

• Important distinction:
• FIFO: scheduling discipline
• Drop-tail: drop policy

FIFO + Drop-tail Problems

• Leaves responsibility of congestion control
to edges (e.g., TCP)

• Does not separate between different flows
• No policing: send more packets  get more

service
• Synchronization: end hosts react to same

15

events

Active Queue Management

• Design active router queue management to
aid congestion control

• Why?
• Routers can distinguish between propagation

and persistent queuing delays
• Routers can decide on transient congestion,

based on workload

16

based on workload

5

Active Queue Designs

• Modify both router and hosts
• DECbit – congestion bit in packet header

• Modify router, hosts use TCP
• Fair queuing

• Per-connection buffer allocation
• RED (Random Early Detection)

• Drop packet or set bit in packet header as soon as

17

• Drop packet or set bit in packet header as soon as
congestion is starting

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ

• XCP

18

Internet Problems

• Full queues
• Routers are forced to have have large queues

to maintain high utilizations
• TCP detects congestion from loss

• Forces network to have long standing queues in
steady-state

• Lock-out problem

19

p
• Drop-tail routers treat bursty traffic poorly
• Traffic gets synchronized easily  allows a few

flows to monopolize the queue space

Design Objectives

• Keep throughput high and delay low
• Accommodate bursts
• Queue size should reflect ability to accept

bursts rather than steady-state queuing
• Improve TCP performance with minimal

hardware changes

20

6

Lock-out Problem

• Random drop
• Packet arriving when queue is full causes some

random packet to be dropped
• Drop front

• On full queue, drop packet at head of queue
• Random drop and drop front solve the lock-

out problem but not the full queues problem

21

out problem but not the full-queues problem

Full Queues Problem

• Drop packets before queue becomes full
(early drop)

• Intuition: notify senders of incipient
congestion
• Example: early random drop (ERD):

• If qlen > drop level, drop each new packet with fixed
probability p

22

p y p
• Does not control misbehaving users

Random Early Detection (RED)

• Detect incipient congestion, allow bursts
• Keep power (throughput/delay) highp p (g p y) g

• Keep average queue size low
• Assume hosts respond to lost packets

• Avoid window synchronization
• Randomly mark packets

23

• Avoid bias against bursty traffic
• Some protection against ill-behaved users

RED Algorithm

• Maintain running average of queue length
• If avgq < minth do nothinggq th g

• Low queuing, send packets through
• If avgq > maxth, drop packet

• Protection from misbehaving sources
• Else mark packet in a manner proportional

24

to queue length
• Notify sources of incipient congestion

7

RED Operation

Min threshMax thresh

Average Queue Length

1.0

P(drop)

25

minth maxth

maxP

1.0

Avg queue length

RED Algorithm

• Maintain running average of queue length
• Byte mode vs. packet mode – why?

• For each packet arrival
• Calculate average queue size (avg)
• If minth ≤ avgq < maxth

• Calculate probability Pa

• With probability P

26

• With probability Pa
• Mark the arriving packet

• Else if maxth ≤ avg
• Mark the arriving packet

Queue Estimation
• Standard EWMA: avgq = (1-wq) avgq + wqqlen

• Special fix for idle periods – why?
• Upper bound on wq depends on minth

• Want to ignore transient congestion
• Can calculate the queue average if a burst arrives

• Set wq such that certain burst size does not exceed minth

• Lower bound on wq to detect congestion relatively
quickly

27

quickly
• Typical wq = 0.002

Thresholds
• minth determined by the utilization

requirement
T d ff b t i d l d tili ti• Tradeoff between queuing delay and utilization

• Relationship between maxth and minth
• Want to ensure that feedback has enough time

to make difference in load
• Depends on average queue increase in one

RTT

28

RTT
• Paper suggest ratio of 2

• Current rule of thumb is factor of 3

8

Packet Marking

• maxp is reflective of typical loss rates
• Paper uses 0.02p

• 0.1 is more realistic value
• If network needs marking of 20-30% then

need to buy a better link!
• Gentle variant of RED (recommended)

29

• Vary drop rate from maxp to 1 as the avgq
varies from maxth to 2* maxth

• More robust to setting of maxth and maxp

Extending RED for Flow Isolation
• Problem: what to do with non-cooperative

flows?
• Fair queuing achieves isolation using per-

flow state – expensive at backbone routers
• How can we isolate unresponsive flows without

per-flow state?
• RED penalty box

30

• Monitor history for packet drops, identify flows
that use disproportionate bandwidth

• Isolate and punish those flows

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ

• XCP

31

Fairness Goals

• Allocate resources fairly
• Isolate ill-behaved users

• Router does not send explicit feedback to
source

• Still needs e2e congestion control
• Still achieve statistical muxing

O fl fill ti i if t d

32

• One flow can fill entire pipe if no contenders
• Work conserving  scheduler never idles link if

it has a packet

9

What is Fairness?

• At what granularity?
• Flows, connections, domains?Flows, connections, domains?

• What if users have different RTTs/links/etc.
• Should it share a link fairly or be TCP fair?

• Maximize fairness index?
• Fairness = (xi)2/n(xi

2) 0<fairness<1
• Basically a tough question to answer typically

33

• Basically a tough question to answer – typically
design mechanisms instead of policy
• User = arbitrary granularity

Max-min Fairness

• Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users

• Formally:
• Resources allocated in terms of increasing demand
• No source gets resource share larger than its

demand

34

• Sources with unsatisfied demands get equal share
of resource

Max-min Fairness Example

• Assume sources 1..n, with resource
demands X1..Xn in ascending order

• Assume channel capacity C.
• Give C/n to X1; if this is more than X1 wants,

divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

• If this is larger than what X2 wants repeat

35

If this is larger than what X2 wants, repeat
process

Max-Min Fair Sharing Example

C 
rfair =

C –else ri

nhere

Assume 10 Mbs links

10

Implementing max-min Fairness

• Generalized processor sharing
• Fluid fairness
• Bitwise round robin among all queues

• Why not simple round robin?
• Variable packet length  can get more service

by sending bigger packets
• Unfair instantaneous service rate

37

• Unfair instantaneous service rate
• What if arrive just before/after packet departs?

Bit-by-bit RR
• Single flow: clock ticks when a bit is

transmitted. For packet i:
P l th A i l ti S b i t it• Pi = length, Ai = arrival time, Si = begin transmit
time, Fi = finish transmit time

• Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit from all
active flows is transmitted  round number

C l l F f h k if b f

38

• Can calculate Fi for each packet if number of
flows is know at all times

• This can be complicated

Bit-by-bit RR Illustration

• Not feasible to
interleave bits on
real networks
• FQ simulates bit-by-

bit RR

39

Fair Queuing

• Mapping bit-by-bit schedule onto packet
transmission schedule

• Transmit packet with the lowest Fi at any
given time
• How do you compute Fi?

40

11

FQ Illustration

Flow 1

Flow 2

I/P O/P

41

Flow n

Variation: Weighted Fair Queuing (WFQ)

Bit-by-bit RR Example

Flow 1 Flow 2 Output

Flow 1
(arriving)

Flow 2
transmitting OutputF=5

F=8
F=10

42

F=10

F=2

Cannot preempt packet
currently being transmitted

Fair Queuing Tradeoffs
• FQ can control congestion by monitoring flows

• Non-adaptive flows can still be a problem – why?
• Complex state

• Must keep queue per flow
• Hard in routers with many flows (e.g., backbone routers)
• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation
• Classification into flows may be hard

43

• Classification into flows may be hard
• Must keep queues sorted by finish times
• Finish times change whenever the flow count changes

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ
• Not discussed in class – FYI only

• XCP

44

12

Core-Stateless Fair Queuing
• Key problem with FQ is core routers

• Must maintain state for 1000’s of flows
M t d t t t t Gb li d• Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives
• Edge routers should do complex tasks since they have

fewer flows
• Core routers can do simple tasks

• No per-flow state/processing this means that core routers

45

No per-flow state/processing  this means that core routers
can only decide on dropping packets not on order of
processing

• Can only provide max-min bandwidth fairness not delay
allocation

Core-Stateless Fair Queuing

• Edge routers keep state about flows and do
computation when packet arrives

• DPS (Dynamic Packet State)
• Edge routers label packets with the result of

state lookup and computation
• Core routers use DPS and local

measurements to control processing of

46

measurements to control processing of
packets

Edge Router Behavior

• Monitor each flow i to measure its arrival
rate (ri)
• EWMA of rate
• Non-constant EWMA constant

• e-T/K where T = current interarrival, K = constant
• Helps adapt to different packet sizes and arrival

patterns

47

• Rate is attached to each packet

Core Router Behavior

• Keep track of fair share rate α
• Increasing α does not increase load (F) by N *
α

• F(α) = Σi min(ri, α)  what does this look like?
• Periodically update α
• Keep track of current arrival rate

• Only update α if entire period was congested or

48

Only update α if entire period was congested or
uncongested

• Drop probability for packet = max(1- α/r, 0)

13

F vs. Alpha

F

C [linked capacity]

49

New alpha
r1 r2 r3 old alpha

alpha

Estimating Fair Share
• Need F(α) = capacity = C

• Can’t keep map of F(α) values  would require per
flow stateflow state

• Since F(α) is concave, piecewise-linear
• F(0) = 0 and F(α) = current accepted rate = Fc

• F(α) = Fc/ α
• F(αnew) = C  αnew = αold * C/Fc

• What if a mistake was made?

50

• Forced into dropping packets due to buffer capacity
• When queue overflows α is decreased slightly

Other Issues

• Punishing fire-hoses – why?
• Easy to keep track of in a FQ scheme

• What are the real edges in such a scheme?
• Must trust edges to mark traffic accurately
• Could do some statistical sampling to see if

edge was marking accurately

51

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ

• XCP
• See also slides by Nicolas Feltman

52

14

How does XCP Work?

Feedback

Round Trip Time

Congestion Window

Feedback

Round Trip Time

Congestion Window

Feedback =

53

Congestion Header

+ 0.1 packet

How does XCP Work?

Feedback =

Round Trip Time

Congestion Window

Feedback =

54

+ 0.1 packet - 0.3 packet

How does XCP Work?

Congestion Window = Congestion Window + Feedback

XCP extends ECN and CSFQ

55

Routers compute feedback without
any per-flow state

Routers compute feedback without
any per-flow state

How Does an XCP Router Compute the
Feedback?

Congestion Controller Fairness Controller
Goal: Divides  between Goal: Matches input traffic to

Congestion Fairness Goal: Divides  between
flows to converge to fairness

Looks at a flow’s state in
Congestion Header

Algorithm:
If  > 0  Divide  equally

MIMD AIMD

Goal: Matches input traffic to
link capacity & drains the queue

Looks at aggregate traffic &
queue

Algorithm:
Aggregate traffic changes by 

g
Controller Controller

56

If  > 0  Divide  equally
between flows
If  < 0  Divide  between
flows proportionally to their
current rates

Aggregate traffic changes by 
 ~ Spare Bandwidth
 ~ - Queue Size
So,  =  davg Spare -  Queue

15

 =  davg Spare -  Queue

Getting the devil out of the details …

Congestion Controller Fairness Controller
Algorithm:
If  > 0  Divide  equally between flowsavg p

20 2 d

Theorem: System converges
to optimal utilization (i.e.,
stable) for any link bandwidth,
delay, number of sources if:

If  < 0  Divide  between flows
proportionally to their current rates

Need to estimate number of
flows N

N 1

57

2
24

0 2  and

(Proof based on Nyquist
Criterion)No Parameter Tuning No Parameter Tuning

 Tinpkts pktpkt RTTCwndT)/(

RTTpkt : Round Trip Time in header
Cwndpkt : Congestion Window in header
T: Counting IntervalNo Per-Flow StateNo Per-Flow State

Discussion
• RED

• Parameter settings
• RED vs. FQ

• How much do we need per flow tracking? At what cost?
• FQ vs. XCP/CSFQ

• Is coarse-grained fairness sufficient?
• Misbehaving routers/trusting the edge
• Deployment (and incentives)
• How painful is FQ

• XCP vs CSFQ• XCP vs CSFQ
• What are the key differences

• Granularity of fairness
• Mechanism vs. policy  will see this in QoS

58

Important Lessons

• How does TCP implement AIMD?
• Sliding window, slow start & ack clocking

H t i t i k l ki d i l• How to maintain ack clocking during loss recovery
 fast recovery

• How does TCP fully utilize a link?
• Role of router buffers

59

• TCP alternatives
• TCP being used in new/unexpected ways
• Key changes needed

