I 15-744: Comp

L-4 TCP

By A
o F R s
o<
£ d b

uter Networking I

TCP Congestlon Control St

. Congestlon Control
* RED

» Assigned Reading
* [FJ93] Random Early Detection Gateways for
Congestion Avoidance
* [TFRC] Equation-Based Congestion Control for
Unicast Applications (2 sections)

Introductlon to TCP

. Communlcatlon abstraction:
Reliable
* Ordered
* Point-to-point
* Byte-stream
* Full duplex
* Flow and congestion controlled

» Protocol implemented entirely at the ends
+ Fate sharing

+ Sliding window with cumulative acks
» Ack field contains last in-order packet received
» Duplicate acks sent when out-of-order packet received

.\?
4

)”}.

Key Thmgs You Should Know Already

. Port numbers
+ TCP/UDP checksum
+ Sliding window flow control
» Sequence numbers
» TCP connection setup
TCP reliability
» Timeout
« Data-driven
Chiu&Jain analysis of linear congestion control

IIK

TCP Congestion Control X

» Changes to TCP motivated by
ARPANET congestion collapse
« Basic principles
* AIMD
» Packet conservation
* Reaching steady state quickly
* ACK clocking

N
rat

o
LN

o’y

Overview vy
» TCP congestion control
* TFRC
* TCP and queues
* Queuing disciplines
 RED
A
ﬂMD - o o ¢ i I

 Distributed, fair and efficient

» Packet loss is seen as sign of congestion and
results in a multiplicative rate decrease
 Factor of 2

» TCP periodically probes for available bandwidth
by increasing its rate

Rate

Time

Implementation Issue)&

» Operating system timers are very coarse — how to pace
packets out smoothly?
* Implemented using a congestion window that limits how
much data can be in the network.
» TCP also keeps track of how much data is in transit
« Data can only be sent when the amount of outstanding
data is less than the congestion window.

» The amount of outstanding data is increased on a “send” and
decreased on “ack”

+ (last sent — last acked) < congestion window
» Window limited by both congestion and buffering
» Sender’'s maximum window = Min (advertised window, cwnd)

2
oy

2

/
\)’/L

]
b

Congestion Avoidance

* If loss occurs when cwnd = W
* Network can handle 0.5W ~ W segments

» Set cwnd to 0.5W (multiplicative decrease)

» Upon receiving ACK

* Increase cwnd by (1 packet)/cwnd
* What is 1 packet? - 1 MSS worth of bytes

« After cwnd packets have passed by >
approximately increase of 1 MSS

* Implements AIMD

Congestion Avoidance Behavior

Congestion
Window

/

Packet loss Cut Grabbing
+ Timeout Con_gestlon back
Window Bandwidth

and Rate

»
Y

[

o
o AR
o

Congestion Avoidance Sequence Plot -

000000 muppmmmmmm

Sequence No

000000 BEpgEpman
ee00

co0ccoooNNEENEENEN

M Packets

@ Acks
Time

Packet Conservation

* At equilibrium, inject packet into network only

when one is removed
« Sliding window and not rate controlled
 But still need to avoid sending burst of packets >
would overflow links
* Need to carefully pace out packets
» Helps provide stability
* Need to eliminate spurious retransmissions

* Accurate RTO estimation
 Better loss recovery techniques (e.g. fast retransmit)

w
Y

Reachlng Steady State v

o
LN
o g

. Domg AIMD is flne in steady state but
slow...

* How does TCP know what is a good initial
rate to start with?

» Should work both for a CDPD (10s of Kbps or
less) and for supercomputer links (10 Gbps and
growing)

* Quick initial phase to help get up to speed
(slow start)

i \:.-.’ Ay
» Congestion window helps to “pace” the
transmission of data packets
* In steady state, a packet is sent when an ack is
received
» Data transmission remains smooth, once it is smooth
+ Self-clocking behavior
Py -
= |
Sender Receiver
‘ A, ‘ I I I I | A |
—= A, —
13
A
Slow Start Packet Pacmg 30

* How do we get this

clocking behavior to
start?
* Initialize cwnd = 1

» Upon receipt of every
ack, cwnd = cwnd + 1

* Implications

* Window actually
increases to Win RTT *

log,(W)
» Can overshoot window
and cause packet loss

15

Slow Start Example

One RTT
OR
1
Or:epkttime
1R @)
2
Bl
2R @ ®
a7 mel
3R (4 (5) 6 (7
18 10 [12][14
L9 11 [13]/15

Slow Start Sequence Plot R Return to Slow Start

* If packet is lost we lose our self clocking as

well
* Need to implement slow-start and congestion
avoidance together
* When timeout occurs set ssthresh to 0.5w
¢ If cwnd < ssthresh, use slow start
* Else use congestion avoidance

Sequence No

®00co00oo " " NNmmEE . .

®cooNEmNERERE

eommmm

emm

M Packets
@Acks Time
17
By 2 A By
AN, . s
jote] Questions joy
) » Current loss rates — 10% in paper
Congestion
Window Timeouts
may still
+ Uniform reaction to congestion — can different

nodes do different things?

/ * TCP friendliness, GAIMD, etc.

|
\Slovvstarl Fast H
» \What about non-linear controls?

Sll)nvl\/“s?‘ar[to DkaCe Retransmit
ackets R ; . !
i ey » Binomial congestion control

» Can we use queuing delay as an indicator?
* TCP Vegas

19

5

w
e

'

Changlng Workloads X

* New applications are changing the way TCP is used

* 1980’s Internet
* Telnet & FTP - long lived flows
* Well behaved end hosts
» Homogenous end host capabilities
» Simple symmetric routing
+ 2000’s Internet
* Web & more Web - large number of short xfers
* Wild west — everyone is playing games to get bandwidth
» Cell phones and toasters on the Internet
» Policy routing
* How to accommodate new applications?

o
LN

Overview e
» TCP congestion control
« TFRC
» See Matt Mukerjee’s slides
* TCP and queues
* Queuing disciplines
* RED
TCP Friendliness ey

. What does |t mean to be TCP friendly?
* TCP is not going away
» Any new congestion control must compete with TCP
flows
» Should not clobber TCP flows and grab bulk of link

» Should also be able to hold its own, i.e. grab its fair share, or it
will never become popular

* How is this quantified/shown?
» Has evolved into evaluating loss/throughput behavior
« If it shows 1/sqrt(p) behavior it is ok
* But is this really true?

23

2
By

Y

TCP Friendly Rate Control (TFRC) T

o
e m— e — e — —
—

. Equatlon 1 —real TCP response

T =
R, f %"” +trro (33} %)ﬁ(l + 32p%)

+ 1stterm corresponds to simple derivation

+ 2" term corresponds to more complicated timeout
behavior

« |s critical in situations with > 5% loss rates = where
timeouts occur frequently

* Key parameters
* RTO
« RTT
* Loss rate

RTO/RTT Estimation b

* RTO not used to perform retransmissions

» Used to model TCP’s extremely slow transmission rate
in this mode

* Only important when loss rate is high
» Accuracy is not as critical
 Different TCP’s have different RTO calculation

* Clock granularity critical »>500ms typical, 100ms,
200ms, 1s also common

* RTO =4 * RTT is close enough for reasonable
operation

« EWMARTT
« RTT,.; = (1-0)RTT, + aRTTSAMP

25

e

NP
o ‘a

Loss Estimation Tl

* Loss event rate vs. loss rate
» Characteristics

» Should work well in steady loss rate

« Should weight recent samples more

» Should increase only with a new loss

» Should decrease only with long period without loss
» Possible choices

* Dynamic window — loss rate over last X packets

* EWMA of interval between losses

* Weighted average of last n intervals
« Last n/2 have equal weight

o
LN

»
Y

Loss Estimation vt

* Dynamic windows has many flaws
« Difficult to chose weight for EWMA

» Solution WMA

* Choose simple linear decrease in weight for
last n/2 samples in weighted average
* What about the last interval?
* Include it when it actually increases WMA value
* What if there is a long period of no losses?

* Special case (history discounting) when current
interval > 2 * avg

27

Slow Start

» Used in TCP to get rough estimate of
network and establish ack clock
* Don’t need it for ack clock
» TCP ensures that overshoot is not > 2x
* Rate based protocols have no such limitation —
why?
* TFRC slow start
* New rate set to min(2 * sent, 2 * recvd)

» Ends with first loss report - rate set to 2
current rate

Congestion Avoidance o8

» Loss interval increases in order to increase rate

* Primarily due to the transmission of new packets in
current interval

 History discounting increases interval by removing old
intervals

* .14 packets per RTT without history discounting
+ .22 packets per RTT with discounting

* Much slower increase than TCP

* Decrease is also slower
* 4 -8 RTTs to halve speed

29

Overview

» TCP congestion control

TFRC

TCP and queues

* Queuing disciplines

* RED

TCP Performance ey

» Can TCP saturate a link?

» Congestion control

¢ Increase utilization until... link becomes
congested

» React by decreasing window by 50%
» Window is proportional to rate * RTT

* Doesn’t this mean that the network
oscillates between 50 and 100% utilization?

* No...this is *not* right!

31

TCP

Only W packets

may be outstanding

Congestion Control

Rule for adjusting \/V/

« Ifan ACK is received:

 If a packet is lost:

Window size

W — W+1/W

W — W/2

Dest

b NP
oY
oy

LN

Single TCP Flow

< e

Router without buffers SN e

w=1 i
=}
util = 0%
W
-y
time

33

By 2 A
o fhRs

TCP Performance IS8,

* In the real world, router queues play
important role

* Window is proportional to rate * RTT
» But, RTT changes as well the window
» Window to fill links = propagation RTT *
bottleneck bandwidth

« If window is larger, packets sit in queue on
bottleneck link

35

. PRy
Summary Unbuffered Link jSo
w ¢t Minimum window
\/\/\/\ / for full utilization
t
» The router can't fully utilize the link
* If the window is too small, link is not full
 If the link is full, next window increase causes drop
» With no bulffer it still achieves 75% utilization
34
By £ A
A
TCP Performance JSSe)

 If we have a large router queue - can get

» But, router queues can cause large delays

* How big does the queue need to be?

* Windows vary from W > W/2
» Must make sure that link is always full
*« W/2>RTT *BW
« W=RTT * BW + Qsize
» Therefore, Qsize > RTT * BW

* Delay?
* Varies between RTT and 2 * RTT

~

5
N

Y

S A
Single TCP Flow Ve
Router with large enough buffers for full link utilization i e b

W=5
i ? |] »
util = 0%
w
time

37

By 2 A

: £p R

Overview oS

TCP congestion control
TFRC

TCP and queues
Queuing disciplines

RED

39

Summary Buffered Link stey
VV 4
Buffer Minimum window
! & forfull utilization
t
+ With sufficient buffering we achieve full link utilization
* The window is always above the critical threshold
+ Buffer absorbs changes in window size
« Buffer Size = Height of TCP Sawtooth
* Minimum buffer size needed is 2T*C
* This is the origin of the rule-of-thumb
38
By £ a8
Queuing Disciplines ey
are

« Each router must implement some queuing
discipline
* Queuing allocates both bandwidth and
buffer space:
+ Bandwidth: which packet to serve (transmit)
next
 Buffer space: which packet to drop next (when
required)
* Queuing also affects latency

40

10

w
Y

LN

Typical Internet Queuing h

* FIFO + drop-tail

» Simplest choice

» Used widely in the Internet
* FIFO (first-in-first-out)

 Implies single class of traffic
* Drop-tail

* Arriving packets get dropped when queue is full

regardless of flow or importance

* Important distinction:
* FIFO: scheduling discipline
» Drop-tail: drop policy

42

. . Y
Packet Drop Dimensions jesey
Aggregation)
Per-connection state Single class
‘ Class-based queuing
Drop position .
Head Tail
‘ Random location
Early drop Overflow drop
i
By 2 A
. P
FIFO + Drop-tail Problems jCy

* Leaves responsibility of congestion control
to edges (e.g., TCP)
* Does not separate between different flows

* No policing: send more packets - get more
service

» Synchronization: end hosts react to same
events

43

2

N P

Active Queue Management jos

» Design active router queue management to
aid congestion control
* Why?
* Routers can distinguish between propagation
and persistent queuing delays

* Routers can decide on transient congestion,
based on workload

A
F\{-
1

44

Active Queue Designs S

* Modify both router and hosts
» DECbit — congestion bit in packet header
* Modify router, hosts use TCP
* Fair queuing
* Per-connection buffer allocation

* RED (Random Early Detection)

» Drop packet or set bit in packet header as soon as
congestion is starting

45

Overview X

» TCP congestion control

TFRC

TCP and queues
* Queuing disciplines

* RED

LN

Y

46

Internet Problems 858)

* Full queues

* Routers are forced to have have large queues
to maintain high utilizations

» TCP detects congestion from loss

* Forces network to have long standing queues in
steady-state

* Lock-out problem
* Drop-tail routers treat bursty traffic poorly

* Traffic gets synchronized easily > allows a few
flows to monopolize the queue space

47

Design Objectives X

* Keep throughput high and delay low

* Accommodate bursts

* Queue size should reflect ability to accept
bursts rather than steady-state queuing

* Improve TCP performance with minimal
hardware changes

S
o

8

48

o a

12

Lock-out Problem o)

* Random drop
» Packet arriving when queue is full causes some
random packet to be dropped
* Drop front
* On full queue, drop packet at head of queue

* Random drop and drop front solve the lock-
out problem but not the full-queues problem

49

L]

5
LN
oY

a_ .t

Full Queues Problem SSey

LN

» Drop packets before queue becomes full
(early drop)

* Intuition: notify senders of incipient
congestion

» Example: early random drop (ERD):
« If glen > drop level, drop each new packet with fixed
probability p
» Does not control misbehaving users

Random Early Detection (RED) jog ey

. Detect |nC|p|ent congestlon, aIIow bursts

+ Keep power (throughput/delay) high
» Keep average queue size low
» Assume hosts respond to lost packets

Avoid window synchronization

* Randomly mark packets

Avoid bias against bursty traffic

Some protection against ill-behaved users

51

2

o

S
By a

RED Algorlthm Y

. Malntaln runnlng average of queue length
* If avgq < miny, do nothing

» Low queuing, send packets through
+ If avgq > max,, drop packet

* Protection from misbehaving sources
* Else mark packet in a manner proportional

to queue length

* Notify sources of incipient congestion

1

13

RED Operation O

Max thresh Min thresh

Average Queue Length

L]

o

Py

RED Algorithm JOSe

e

=}
i bd b

LN

» Maintain running average of queue length
» Byte mode vs. packet mode — why?

* For each packet arrival
» Calculate average queue size (avg)
* If ming, < avgq < max,
+ Calculate probability P,
» With probability P,
» Mark the arriving packet

* Else if maxy, < avg
» Mark the arriving packet

P(drop)A
1.0
maxp
ming, maXy, Avg queue length
53
9
By A
. . A%
Queue Estimation joyey

« Standard EWMA: avgq = (1-w,) avgq + w,glen

+ Special fix for idle periods — why?
* Upper bound on w, depends on miny,

» Want to ignore transient congestion

+ Can calculate the queue average if a burst arrives

* Set w, such that certain burst size does not exceed miny,
* Lower bound on w, to detect congestion relatively
quickly

* Typical w, = 0.002

55

Thresholds

* miny, determined by the utilization
requirement
 Tradeoff between queuing delay and utilization
* Relationship between max,, and min,

» Want to ensure that feedback has enough time
to make difference in load

» Depends on average queue increase in one
RTT

» Paper suggest ratio of 2
 Current rule of thumb is factor of 3

14

iacketMar_king o o _+E Eoming_Up_ o o
* max, is reflective of typical loss rates * Wednesday lecture: Fair Queuing
» Paper uses 0.02 « Read WFQ paper

* First two sections of XCP paper
* Presentation by Nicolas Feltman

+ 0.1 is more realistic value
* If network needs marking of 20-30% then
need to buy a better link! * Friday lecture: Multimedia
+ Gentle variant of RED (recommended) * Will fix readings

* Vary drop rate from max; to 1 as the avgq
varies from maxy, to 2* maxy,

* More robust to setting of max,, and max,

57

