
1

15-744: Computer Networking

L-4 TCP

TCP Congestion Control
• Congestion Control
• RED

• Assigned Reading
• [FJ93] Random Early Detection Gateways for

Congestion Avoidance
• [TFRC] Equation-Based Congestion Control for

2

Unicast Applications (2 sections)

Introduction to TCP

• Communication abstraction:
• Reliable
• OrderedOrdered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

• Protocol implemented entirely at the ends
• Fate sharing

3

g

• Sliding window with cumulative acks
• Ack field contains last in-order packet received
• Duplicate acks sent when out-of-order packet received

Key Things You Should Know Already

• Port numbers
• TCP/UDP checksum
• Sliding window flow control

• Sequence numbers
• TCP connection setup
• TCP reliability

Ti t• Timeout
• Data-driven

• Chiu&Jain analysis of linear congestion control

4

2

Overview

• TCP congestion control

• TFRC

• TCP and queues

• Queuing disciplines• Queuing disciplines

• RED

5

TCP Congestion Control

• Changes to TCP motivated by
ARPANET congestion collapseg p

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly

6

• Reaching steady state quickly
• ACK clocking

AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion andPacket loss is seen as sign of congestion and

results in a multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth
by increasing its rate

7
Time

Rate

Implementation Issue

• Operating system timers are very coarse – how to pace
packets out smoothly?

• Implemented using a congestion window that limits how• Implemented using a congestion window that limits how
much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and

decreased on “ack”

8

• (last sent – last acked) < congestion window
• Window limited by both congestion and buffering

• Sender’s maximum window = Min (advertised window, cwnd)

3

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0 5W ~ W segments• Network can handle 0.5W ~ W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet?  1 MSS worth of bytes

9

• After cwnd packets have passed by 
approximately increase of 1 MSS

• Implements AIMD

Congestion Avoidance Sequence Plot

Sequence No

10

Time

Packets

Acks

Congestion Avoidance Behavior

Congestion
Window

11

Time
Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

Packet Conservation
• At equilibrium, inject packet into network only

when one is removed
Slidi i d d t t t ll d• Sliding window and not rate controlled

• But still need to avoid sending burst of packets 
would overflow links

• Need to carefully pace out packets
• Helps provide stability

• Need to eliminate spurious retransmissions

12

p
• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast retransmit)

4

TCP Packet Pacing
• Congestion window helps to “pace” the

transmission of data packets
• In steady state, a packet is sent when an ack is

received
• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

P
Pb

13

Pr

ArAb

ReceiverSender

As

Reaching Steady State

• Doing AIMD is fine in steady state but
slow…

• How does TCP know what is a good initial
rate to start with?
• Should work both for a CDPD (10s of Kbps or

less) and for supercomputer links (10 Gbps and
growing)

14

growing)
• Quick initial phase to help get up to speed

(slow start)

Slow Start Packet Pacing

• How do we get this
clocking behavior to
start?
• Initialize cwnd = 1
• Upon receipt of every

ack, cwnd = cwnd + 1
• Implications

• Window actually

15

Window actually
increases to W in RTT *
log2(W)

• Can overshoot window
and cause packet loss

Slow Start Example

One RTT
0R

1

One pkt time

2
1R

3
2R

1

2 3

16

4
5

6
7

8
3R

9
10
11

12
13

14
15

4 5 6 7

5

Slow Start Sequence Plot
.
.
.

Sequence No

17

Time

Packets

Acks

Return to Slow Start

• If packet is lost we lose our self clocking as
well
• Need to implement slow-start and congestion

avoidance together
• When timeout occurs set ssthresh to 0.5w

• If cwnd < ssthresh, use slow start
• Else use congestion avoidance

18

• Else use congestion avoidance

TCP Saw Tooth Behavior

Congestion
Window Timeouts

may stillmay still
occur

19

Time
Initial

Slowstart
Fast

Retransmit
and Recovery

Slowstart
to pace
packets

Questions

• Current loss rates – 10% in paper

• Uniform reaction to congestion – can different
nodes do different things?
• TCP friendliness, GAIMD, etc.

• Can we use queuing delay as an indicator?
• TCP Vegas• TCP Vegas

• What about non-linear controls?
• Binomial congestion control

20

6

Overview

• TCP congestion control

• TFRC
• See Matt Mukerjee’s slides

• TCP and queues

• Queuing disciplines• Queuing disciplines

• RED

21

Changing Workloads

• New applications are changing the way TCP is used
• 1980’s Internet

T l t & FTP l li d fl• Telnet & FTP  long lived flows
• Well behaved end hosts
• Homogenous end host capabilities
• Simple symmetric routing

• 2000’s Internet
• Web & more Web  large number of short xfers
• Wild west – everyone is playing games to get bandwidth

22

• Cell phones and toasters on the Internet
• Policy routing

• How to accommodate new applications?

TCP Friendliness
• What does it mean to be TCP friendly?

• TCP is not going away
A ti t l t t ith TCP• Any new congestion control must compete with TCP
flows

• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair share, or it

will never become popular

• How is this quantified/shown?

23

• Has evolved into evaluating loss/throughput behavior
• If it shows 1/sqrt(p) behavior it is ok
• But is this really true?

TCP Friendly Rate Control (TFRC)
• Equation 1 – real TCP response

• 1st term corresponds to simple derivation
• 2nd term corresponds to more complicated timeout

behavior
• Is critical in situations with > 5% loss rates  where

timeouts occur frequently

24

timeouts occur frequently
• Key parameters

• RTO
• RTT
• Loss rate

7

RTO/RTT Estimation
• RTO not used to perform retransmissions

• Used to model TCP’s extremely slow transmission rate
in this modein this mode

• Only important when loss rate is high
• Accuracy is not as critical

• Different TCP’s have different RTO calculation
• Clock granularity critical 500ms typical, 100ms,

200ms, 1s also common
• RTO = 4 * RTT is close enough for reasonable

25

• RTO = 4 * RTT is close enough for reasonable
operation

• EWMA RTT
• RTTn+1 = (1-)RTTn + RTTSAMP

Loss Estimation
• Loss event rate vs. loss rate
• Characteristics

Sh ld k ll i t d l t• Should work well in steady loss rate
• Should weight recent samples more
• Should increase only with a new loss
• Should decrease only with long period without loss

• Possible choices
• Dynamic window – loss rate over last X packets

26

y p
• EWMA of interval between losses
• Weighted average of last n intervals

• Last n/2 have equal weight

Loss Estimation
• Dynamic windows has many flaws
• Difficult to chose weight for EWMA
• Solution WMA

• Choose simple linear decrease in weight for
last n/2 samples in weighted average

• What about the last interval?
• Include it when it actually increases WMA value

27

• What if there is a long period of no losses?
• Special case (history discounting) when current

interval > 2 * avg

Slow Start
• Used in TCP to get rough estimate of

network and establish ack clock
D ’t d it f k l k• Don’t need it for ack clock

• TCP ensures that overshoot is not > 2x
• Rate based protocols have no such limitation –

why?
• TFRC slow start

28

• New rate set to min(2 * sent, 2 * recvd)
• Ends with first loss report  rate set to ½

current rate

8

Congestion Avoidance
• Loss interval increases in order to increase rate

• Primarily due to the transmission of new packets in
current intervalcurrent interval

• History discounting increases interval by removing old
intervals

• .14 packets per RTT without history discounting
• .22 packets per RTT with discounting

• Much slower increase than TCP

29

Much slower increase than TCP
• Decrease is also slower

• 4 – 8 RTTs to halve speed

Overview

• TCP congestion control

• TFRC

• TCP and queues

• Queuing disciplines• Queuing disciplines

• RED

30

TCP Performance

• Can TCP saturate a link?
• Congestion controlg

• Increase utilization until… link becomes
congested

• React by decreasing window by 50%
• Window is proportional to rate * RTT

D ’t thi th t th t k

31

• Doesn’t this mean that the network
oscillates between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!

TCP Congestion Control

Only W packets

Rule for adjusting W
• If an ACK is received: W ← W+1/W

may be outstanding • If a packet is lost: W ← W/2

Source Dest

Window size

32

maxW

2
maxW

t

Window size

9

Single TCP Flow
Router without buffers

33

Summary Unbuffered Link

W Minimum window
for full utilization

t

• The router can’t fully utilize the link

34

• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization

TCP Performance

• In the real world, router queues play
important role
• Window is proportional to rate * RTT

• But, RTT changes as well the window
• Window to fill links = propagation RTT *

bottleneck bandwidth
• If window is larger, packets sit in queue on

35

bottleneck link

TCP Performance
• If we have a large router queue  can get 100%

utilization
B t t l d l• But, router queues can cause large delays

• How big does the queue need to be?
• Windows vary from W W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize

36

• Therefore, Qsize > RTT * BW

• Ensures 100% utilization
• Delay?

• Varies between RTT and 2 * RTT

10

Single TCP Flow
Router with large enough buffers for full link utilization

37

Summary Buffered Link

W

Minimum window

t

Minimum window
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold

Buffer

38

• The window is always above the critical threshold
• Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

• This is the origin of the rule-of-thumb

Overview

• TCP congestion control

• TFRC

• TCP and queues

• Queuing disciplines• Queuing disciplines

• RED

39

Queuing Disciplines

• Each router must implement some queuing
discipline

• Queuing allocates both bandwidth and
buffer space:
• Bandwidth: which packet to serve (transmit)

next
• Buffer space: which packet to drop next (when

40

• Buffer space: which packet to drop next (when
required)

• Queuing also affects latency

11

Packet Drop Dimensions

Aggregation
Per connection state Single classPer-connection state Single class

Drop position
Head Tail

Class-based queuing

41

Random location

Early drop Overflow drop

Typical Internet Queuing
• FIFO + drop-tail

• Simplest choice
• Used widely in the Internet• Used widely in the Internet

• FIFO (first-in-first-out)
• Implies single class of traffic

• Drop-tail
• Arriving packets get dropped when queue is full

regardless of flow or importance

42

• Important distinction:
• FIFO: scheduling discipline
• Drop-tail: drop policy

FIFO + Drop-tail Problems

• Leaves responsibility of congestion control
to edges (e.g., TCP)

• Does not separate between different flows
• No policing: send more packets  get more

service
• Synchronization: end hosts react to same

43

events

Active Queue Management

• Design active router queue management to
aid congestion control

• Why?
• Routers can distinguish between propagation

and persistent queuing delays
• Routers can decide on transient congestion,

based on workload

44

based on workload

12

Active Queue Designs

• Modify both router and hosts
• DECbit – congestion bit in packet header

• Modify router, hosts use TCP
• Fair queuing

• Per-connection buffer allocation
• RED (Random Early Detection)

• Drop packet or set bit in packet header as soon as

45

• Drop packet or set bit in packet header as soon as
congestion is starting

Overview

• TCP congestion control

• TFRC

• TCP and queues

• Queuing disciplines• Queuing disciplines

• RED

46

Internet Problems

• Full queues
• Routers are forced to have have large queues

to maintain high utilizations
• TCP detects congestion from loss

• Forces network to have long standing queues in
steady-state

• Lock-out problem

47

p
• Drop-tail routers treat bursty traffic poorly
• Traffic gets synchronized easily  allows a few

flows to monopolize the queue space

Design Objectives

• Keep throughput high and delay low
• Accommodate bursts
• Queue size should reflect ability to accept

bursts rather than steady-state queuing
• Improve TCP performance with minimal

hardware changes

48

13

Lock-out Problem

• Random drop
• Packet arriving when queue is full causes some

random packet to be dropped
• Drop front

• On full queue, drop packet at head of queue
• Random drop and drop front solve the lock-

out problem but not the full queues problem

49

out problem but not the full-queues problem

Full Queues Problem

• Drop packets before queue becomes full
(early drop)

• Intuition: notify senders of incipient
congestion
• Example: early random drop (ERD):

• If qlen > drop level, drop each new packet with fixed
probability p

50

p y p
• Does not control misbehaving users

Random Early Detection (RED)

• Detect incipient congestion, allow bursts
• Keep power (throughput/delay) highp p (g p y) g

• Keep average queue size low
• Assume hosts respond to lost packets

• Avoid window synchronization
• Randomly mark packets

51

• Avoid bias against bursty traffic
• Some protection against ill-behaved users

RED Algorithm

• Maintain running average of queue length
• If avgq < minth do nothinggq th g

• Low queuing, send packets through
• If avgq > maxth, drop packet

• Protection from misbehaving sources
• Else mark packet in a manner proportional

52

to queue length
• Notify sources of incipient congestion

14

RED Operation

Min threshMax thresh

Average Queue Length

1.0

P(drop)

53

minth maxth

maxP

1.0

Avg queue length

RED Algorithm

• Maintain running average of queue length
• Byte mode vs. packet mode – why?

• For each packet arrival
• Calculate average queue size (avg)
• If minth ≤ avgq < maxth

• Calculate probability Pa

• With probability P

54

• With probability Pa
• Mark the arriving packet

• Else if maxth ≤ avg
• Mark the arriving packet

Queue Estimation
• Standard EWMA: avgq = (1-wq) avgq + wqqlen

• Special fix for idle periods – why?
• Upper bound on wq depends on minth

• Want to ignore transient congestion
• Can calculate the queue average if a burst arrives

• Set wq such that certain burst size does not exceed minth

• Lower bound on wq to detect congestion relatively
quickly

55

quickly
• Typical wq = 0.002

Thresholds
• minth determined by the utilization

requirement
T d ff b t i d l d tili ti• Tradeoff between queuing delay and utilization

• Relationship between maxth and minth
• Want to ensure that feedback has enough time

to make difference in load
• Depends on average queue increase in one

RTT

56

RTT
• Paper suggest ratio of 2

• Current rule of thumb is factor of 3

15

Packet Marking

• maxp is reflective of typical loss rates
• Paper uses 0.02p

• 0.1 is more realistic value
• If network needs marking of 20-30% then

need to buy a better link!
• Gentle variant of RED (recommended)

57

• Vary drop rate from maxp to 1 as the avgq
varies from maxth to 2* maxth

• More robust to setting of maxth and maxp

Coming Up

• Wednesday lecture: Fair Queuing
• Read WFQ paper
• First two sections of XCP paper
• Presentation by Nicolas Feltman

• Friday lecture: Multimedia
• Will fix readings

58

