Next Lecture: Interdomain Routing

- BGP

- Assigned Reading
 - MIT BGP Class Notes (last Friday)
 - [Gao00] On Inferring Autonomous System Relationships in the Internet

Outline

- Need for hierarchical routing
- BGP
 - ASes, Policies
 - BGP Attributes
 - BGP Path Selection
 - iBGP
 - Inferring AS relationships
- Problems with BGP
 - Convergence
 - Sub optimal routing

Routing Hierarchies

- Flat routing doesn't scale
 - Each node cannot be expected to have routes to every destination (or destination network)
- Key observation
 - Need less information with increasing distance to destination
- Two radically different approaches for routing
 - The area hierarchy
 - The landmark hierarchy
Areas

- Divide network into areas
 - Areas can have nested sub-areas
 - Constraint: no path between two sub-areas of an area can exit that area
- Hierarchically address nodes in a network
 - Sequentially number top-level areas
 - Sub-areas of area are labeled relative to that area
 - Nodes are numbered relative to the smallest containing area

Routing

- Within area
 - Each node has routes to every other node
- Outside area
 - Each node has routes for other top-level areas only
 - Inter-area packets are routed to nearest appropriate border router
 - Can result in sub-optimal paths

Path Sub-optimality

- 3 hop red path vs. 2 hop green path

A Logical View of the Internet

- National (Tier 1 ISP)
 - "Default-free" with global reachability info
 - Eg: AT & T, UUNET, Sprint
- Regional (Tier 2 ISP)
 - Regional or country-wide
 - Eg: Pacific Bell
- Local (Tier 3 ISP)
 - Eg: Telerama DSL
Landmark Routing: Basic Idea

- Source wants to reach LM0[a], whose address is c.b.a:
 - Source can see LM2[c], so sends packet towards c
 - Entering LM1[b] area, first router diverts packet to b
 - Entering LM0[a] area, packet delivered to a
- Not shortest path
- Packet may not reach landmarks

Routing Table for Router g

<table>
<thead>
<tr>
<th>Landmark</th>
<th>Level</th>
<th>Next hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2[d]</td>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td>LM1[i]</td>
<td>1</td>
<td>k</td>
</tr>
<tr>
<td>LM2[e]</td>
<td>0</td>
<td>f</td>
</tr>
<tr>
<td>LM2[k]</td>
<td>0</td>
<td>k</td>
</tr>
<tr>
<td>LM2[l]</td>
<td>0</td>
<td>f</td>
</tr>
</tbody>
</table>

r0 = 2, r1 = 4, r2 = 8 hops
- How to go from d.i.g to d.n.t? g-f-e-d-u-t
- How does path length compare to shortest path? g-k-l-u-t

Outline

- Need for hierarchical routing
- BGP
 - ASes, Policies
 - BGP Attributes
 - BGP Path Selection
 - IEBGP
 - Inferring AS relationships
Autonomous Systems (ASes)

- **Autonomous Routing Domain**
 - Glued together by a common administration, policies etc
- Autonomous system – is a specific case of an ARD
 - ARD is a concept vs AS is an actual entity that participates in routing
 - Has an unique 16 bit ASN assigned to it and typically participates in inter-domain routing
- Examples:
 - MIT: 3, CMU: 9
 - AT&T: 7018, 6341, 5074, ...
 - UUNET: 701, 702, 284, 12199, ...
 - Sprint: 1239, 1240, 6211, 6242, ...
- How do ASes interconnect to provide global connectivity
- How does routing information get exchanged

Nontransit vs. Transit ASes

- ISP 1
- ISP 2
- NET A

Traffic NEVER flows from ISP 1 through NET A to ISP 2 (At least not intentionally!)

IP traffic

Customer and Providers

- Customer pays provider for access to the Internet

The Peering Relationship

- Peers provide transit between their respective customers
- Peers do not provide transit between peers
- Peers (often) do not exchange $$$
Peering Wars

Peer
- Reduces upstream transit costs
- Can increase end-to-end performance
- May be the only way to connect your customers to some part of the Internet (“Tier 1”)

Don’t Peer
- You would rather have customers
- Peers are usually your competition
- Peering relationships may require periodic renegotiation

Peering struggles are by far the most contentious issues in the ISP world!
Peering agreements are often confidential.

Routing in the Internet

- Link state or distance vector?
 - No universal metric – policy decisions

- Problems with distance-vector:
 - Bellman-Ford algorithm may not converge

- Problems with link state:
 - Metric used by routers not the same – loops
 - LS database too large – entire Internet
 - May expose policies to other AS’s

Solution: Distance Vector with Path

- Each routing update carries the entire path
- Loops are detected as follows:
 - When AS gets route check if AS already in path
 - If yes, reject route
 - If no, add self and (possibly) advertise route further
- Advantage:
 - Metrics are local - AS chooses path, protocol ensures no loops

BGP-4

- BGP = Border Gateway Protocol
- Is a Policy-Based routing protocol
- Is the EGP of today’s global Internet
- Relatively simple protocol, but configuration is complex and the entire world can see, and be impacted by, your mistakes.

1989 : BGP-1 [RFC 1105]
 - Replacement for EGP (1984, RFC 904)
1990 : BGP-2 [RFC 1163]
1991 : BGP-3 [RFC 1267]
1995 : BGP-4 [RFC 1771]
 - Support for Classless Interdomain Routing (CIDR)
BGP Operations (Simplified)

- Establish session on TCP port 179
- Exchange all active routes
- Exchange incremental updates

Interconnecting BGP Peers

- BGP uses TCP to connect peers
- Advantages:
 - Simplifies BGP
 - No need for periodic refresh - routes are valid until withdrawn, or the connection is lost
 - Incremental updates
- Disadvantages
 - Congestion control on a routing protocol?
 - Inherits TCP vulnerabilities!
 - Poor interaction during high load

Four Types of BGP Messages

- Open: Establish a peering session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: Announcing new routes or withdrawing previously announced routes.

```
announcement = prefix + attributes values
```
Examples of BGP Policies

- A multi-homed AS refuses to act as transit
 - Limit path advertisement
- A multi-homed AS can become transit for some AS’s
 - Only advertise paths to some AS’s
 - Eg: A Tier-2 provider multi-homed to Tier-1 providers
- An AS can favor or disfavor certain AS’s for traffic transit from itself

Export Policy

- An AS exports only best paths to its neighbors
 - Guarantees that once the route is announced the AS is willing to transit traffic on that route
- To Customers
 - Announce all routes learned from peers, providers and customers, and self-origin routes
- To Providers
 - Announce routes learned from customers and self-origin routes
- To Peers
 - Announce routes learned from customers and self-origin routes

Import Routes

Export Routes
BGP UPDATE Message

- List of withdrawn routes
- Network layer reachability information
 - List of reachable prefixes
- Path attributes
 - Origin
 - Path
 - Metrics
- All prefixes advertised in message have same path attributes

Path Selection Criteria

- Information based on path attributes
- Attributes + external (policy) information
- Examples:
 - Hop count
 - Policy considerations
 - Preference for AS
 - Presence or absence of certain AS
 - Path origin
 - Link dynamics

Important BGP Attributes

- Local Preference
- AS-Path
- MED
- Next hop

LOCAL PREF

- Local (within an AS) mechanism to provide relative priority among BGP routers
LOCAL PREF – Common Uses

• Handle routes advertised to multi-homed transit customers
 • Should use direct connection (multihoming typically has a primary/backup arrangement)
• Peering vs. transit
 • Prefer to use peering connection, why?
• In general, customer > peer > provider
 • Use LOCAL PREF to ensure this

Multi-Exit Discriminator (MED)

• Hint to external neighbors about the preferred path into an AS
 • Non-transitive attribute
 • Different AS choose different scales
• Used when two AS’s connect to each other in more than one place

AS_PATH

• List of traversed AS’s
• Useful for loop checking and for path-based route selection (length, regexp)

MED

• Typically used when two ASes peer at multiple locations
• Hint to R1 to use R3 over R4 link
• Cannot compare AS40’s values to AS30’s
MED

- MED is typically used in provider/subscriber scenarios
- It can lead to unfairness if used between ISP because it may force one ISP to carry more traffic:

 - ISP1 ignores MED from ISP2
 - ISP2 obeys MED from ISP1
 - ISP2 ends up carrying traffic most of the way

Route Selection Process

- Highest Local Preference
- Enforce relationships
- Shortest AS Path
- Lowest MED
- i-BGP < e-BGP
- Lowest IGP cost to BGP egress
- Lowest router ID
- Traffic engineering
- Throw up hands and break ties

Internal vs. External BGP

- BGP can be used by R3 and R4 to learn routes
- How do R1 and R2 learn routes?
- Option 1: Inject routes in IGP
 - Only works for small routing tables
- Option 2: Use I-BGP

Internal BGP (I-BGP)

- Same messages as E-BGP
- Different rules about re-advertising prefixes:
 - Prefix learned from E-BGP can be advertised to I-BGP neighbor and vice-versa, but
 - Prefix learned from one I-BGP neighbor cannot be advertised to another I-BGP neighbor
- Reason: no AS PATH within the same AS and thus danger of looping.
Internal BGP (I-BGP)

- R3 can tell R1 and R2 prefixes from R4
- R3 can tell R4 prefixes from R1 and R2
- R3 cannot tell R2 prefixes from R1

- R2 can only find these prefixes through a direct connection to R1
- Result: I-BGP routers must be fully connected (via TCP)!
 - contrast with E-BGP sessions that map to physical links

Policy Impact

- Different relationships – Transit, Peering
- Export policies → selective export
- “Valley-free” routing
 - Number links as (+1, 0, -1) for customer-to-provider, peer and provider-to-customer
 - In any path should only see sequence of +1, followed by at most one 0, followed by sequence of -1

How to infer AS relationships?

- Can we infer relationship from the AS graph
 - From routing information
 - From size of ASes / AS topology graph
 - From multiple views and route announcements
- [Gao01]
 - Three-pass heuristic
 - Data from University of Oregon RouteViews
- [SARK01]
 - Data from multiple vantage points
[Gao00] Basic Algorithm

• Phase 1: Identify the degrees of the ASes from the tables
• Phase 2: Annotate edges with “transit” relation
 • AS u transits traffic for AS v if it provides its provider/peer routes to v.
• Phase 3: Identify P2C, C2P, Sibling edges
 • P2C ➔ If and only if u transits for v, and v does not, Sibling otherwise
 • Peering relationship?

How does Phase 2 work?

• Notion of Valley free routing
 • Each AS path can be
 • Uphill
 • Downhill
 • Uphill – Downhill
 • Uphill – P2P
 • P2P – Downhill
 • Uphill – P2P – Downhill
• How to identify Uphill/Downhill
 • Heuristic: Identify the highest degree AS to be the end of the uphill path (path starts from source)

Next Lecture: Congestion Control

• Wednesday: optional review of transport and above
 • Jacobson 88
• No lecture on Friday
• Next Monday: Congestion Control:
• Assigned Reading
 • [Floyd and Jacobson] Random Early Detection Gateways for Congestion Avoidance
 • 2 sections from TFRC paper