15-744: Computer Networking

L-1 Intro to Computer Networks

Outline

• Administrivia
• Layering

Who’s Who?

• Professor: Peter Steenkiste
 • http://www.cs.cmu.edu/~prs
 • prs@cs.cmu.edu
• TA:
 • Matt Mukerjee
 • David Naylor
• Course info
 • http://www.cs.cmu.edu/~prs/15-744-F12
• Office hours: TBD

Objectives

• Understand the state-of-the-art in network protocols, architectures and applications
• Understand how networking research is done
 • Teach the typical constraints and thought processes used in networking research
• How is this course different from undergraduate networking (15-441)?
 • Training network programmers vs. training network researchers
Web Page

- Check regularly!!
 - Content is updated as semester progresses
- Course schedule
- Reading list
- Lecture notes
- Announcements
- Assignments
- Project ideas
- Exams

Course Schedule

- We will have one lecture each of the first two weeks of the semester
 - Wednesday, 3:50-5pm
- We will start the regular schedule in week 4
- The first part of the semester we will have three lectures per week
 - Fewer or no lectures in the last few weeks of the semester – better load distribution
 - I will also use slack to work around travel

Course Materials

- Research papers
 - Links to ps or pdf on Web page
 - Combination of classic and recent work
 - ~40 papers
 - Optional readings
- Recommended textbooks
 - For students not familiar with networking
 - Peterson & Davie or Kurose & Ross
- A couple of background lectures

Class Coverage

- Little coverage of undergraduate material
 - Students expected to know this
 - Especially true for physical and data link layer
- Focus on network to application layer
- We will deal with:
 - Protocol rules and algorithms
 - Investigate protocol trade-offs
 - Why and when this way and not another?
Lecture Topics

Traditional
- Layering
- Internet architecture
- Routing (IP)
- Transport (TCP)
- Naming (DNS)
- Mobility/wireless

Recent Topics
- Machine rooms
- Security
- Overlay networks
- P2P applications
- Future Internet
- Topology

+ 2-3 TBD slots

Lectures Format

- Lectures include an overview and discussion of the research papers
- To prepare for the lectures, you must read the assigned papers before the lecture
- You must also comment on the paper and review other people’s comments
- Affects part of your grade
- The goal is to learn to critique and appreciate systems papers
 - Try to be positive…
 - Why or why not keep this paper in syllabus?
 - What issues are left open for future research?
 - What are the important implications of the work?
 - What would you have done differently?

Discussion Site

- For each lecture, post a brief comment about the assigned paper:
 - You should do this by 5pm the day before the lecture
 - Write access is removed at 5pm
 - Also read the other comments
- The discussion site is:
 http://sourcery.cmcl.cs.cmu.edu:4000/
 Please visit this web site to create an account. Open the collection CMU 15-744: Computer Networks -- Fall 12. You should then add yourself to the collection using the subscription code: <<ask instructor>>

Student Presentation

- Each student will present a 15 minute presentation based on one of the papers
 - Complements the course material
 - Looking at related work, put within the context of the lecture, contrast with other readings, etc.
 - Lead a discussion
 - Slides are part of the course content
- Goals are …
 - Develop a deeper understanding of one of the course topics
 - Gain experience in giving short talks
Projects

- The goal of the project is to give you a taste of systems research in a networking context
 - Emphasis on the word “research”
- Teams of 2-3 students
- Proposal is due on September 26
- You should be very proactive – start today!
 - Example topics on course web page – will be updated
 - Use our office hours for brainstorming

Homework 0

- Respond to my e-mails asking for:
 - 4 lecture choices for presentation
 - 2-3 topic choice for TBD lectures
 - 1 sentence version of project interest & list of project partner
 - E.g., I want to apply game theory to network routing.
- Register on discussion site
 - Post comments for 1st two papers

Grading

- Homework assignments (15%)
 - 4 Problem sets
- Class + discussion site participation (15%)
- Midterm exam + final exam (35%)
 - Closed book, in-class
- 2 or 3 person project (35%)
 - Main focus of class work
 - Make project productive for you!

Outline

- Administrivia
- Layering
This/Next Lecture: Design Considerations

- How to determine split of functionality
 - Across protocol layers
 - Across network nodes
- Assigned Reading
 - [SRC84] End-to-end Arguments in System Design
 - [Cla88] Design Philosophy of the DARPA Internet Protocols
- Optional Reading
 - [CT90] Architectural Considerations for a New Generation of Protocols

What is the Objective of Networking?

- Communication between applications on different computers
- Must understand application needs/demands
 - Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - Delay sensitivity
 - Loss sensitivity

Back in the Old Days...

Packet Switching (Internet)
Packet Switching

Positives
- Interleave packets from different sources
- Efficient: resources used on demand
 - Statistical multiplexing
- General
 - Multiple types of applications
- Allows for bursty traffic
 - Addition of queues

Challenges
- Store and forward
 - Packets are self contained units
 - Can use alternate paths – reordering
- Contention
 - Congestion
 - Delay

Challenge

- Many differences between networks
 - Address formats
 - Performance – bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
- How to translate between various network technologies?

Internet[work]

- A collection of interconnected networks
- Host: network endpoints (computer, PDA, light switch, …)
- Router: node that connects networks
 - How do we translate?

How To Find Nodes?

Internet

Computer 1

Need naming and routing

Computer 2
Naming

What's the IP address for www.cmu.edu?

It is 128.2.11.43

Computer 1 Local DNS Server

Translates human readable names to logical endpoints

Routing

Routers send packet towards destination

H: Hosts
R: Routers

Meeting Application Demands

• Reliability
 • Corruption
 • Lost packets
• Flow and congestion control
• Fragmentation
• In-order delivery
• Etc…

What if the Data gets Corrupted?

Problem: Data Corruption

Solution: Add a checksum

Internet

GET index.html → 0,9
GET windex.html → 9,6,7,8
GET index.html → 4,5
GET windex.html → 7,1,2,3,6
What if Network is Overloaded?

Problem: Network Overload

- Short bursts: buffer
- What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load = resources → "congestion control"

Solution: Buffering and Congestion Control

What if the Data gets Lost?

Problem: Lost Data

Solution: Timeout and Retransmit

What if the Data Doesn’t Fit?

Problem: Packet size

- On Ethernet, max IP packet is 1.5kbytes
- Typical web page is 10kbytes

Solution: Fragment data across packets

What if the Data is Out of Order?

Problem: Out of Order

Solution: Add Sequence Numbers
Lots of Functions Needed

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc.

What is Layering?

- Modular approach to network functionality
- Example:

![Layering Diagram]

Protocols

- Module in layered structure
- Set of rules governing communication between network elements (applications, hosts, routers)
- Protocols define:
 - Interface to higher layers (API)
 - Interface to peer
 - Format and order of messages
 - Actions taken on receipt of a message

Layering Characteristics

- Each layer relies on services from layer below and exports services to layer above
- Interface defines interaction
- Hides implementation - layers can change without disturbing other layers (black box)
Layering: technique to simplify complex systems

E.g.: OSI Model: 7 Protocol Layers
- Physical: how to transmit bits
- Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end
- Session: how to tie flows together
- Presentation: byte ordering, security
- Application: everything else

Layer Encapsulation

OSI Layers and Locations
Protocol Demultiplexing

- Multiple choices at each layer

![Protocol Demultiplexing Diagram]

Is Layering Harmful?

- Sometimes..
 - Layer N may duplicate lower level functionality (e.g., error recovery)
 - Layers may need same info (timestamp, MTU)
 - Strict adherence to layering may hurt performance

Next Lecture: Design Considerations

- How to determine split of functionality
 - Across protocol layers
 - Across network nodes
- Assigned Reading
 - [SRC84] End-to-end Arguments in System Design
 - [Cla88] Design Philosophy of the DARPA Internet Protocols
- Optional Reading
 - [CT90] Architectural Considerations for a New Generation of Protocols

Homework 0

- Respond to my e-mails asking for:
 - 4 lecture choices for critique/public review
 - 1 topic choice for first TBD lecture
 - 1 sentence version of project interest & list of project partner
 - E.g., I want to apply game theory to network routing.
- Register on discussion site
- Post response for 1st two papers