Goal and Outline

- **Goal**: gain a basic understanding of how you can build a (small) packet switched network
 - Focus is to convince you that this is feasible
 - A bit more detail later in the course for Ethernet and WiFi

- **Physical and Datalink functions**
- **Physical layer**: Modulation
- **Datalink**
 - Medium access control
 - Scaling up

What Do We Need?

- **Physical layer**:
 - Modulation: send a stream of bits to a receiver using an electromagnetic signal
 - Coding: add redundancy for error detection, meet electrical constraints, ...

- **Datalink layer**:
 - Framing: identify packet boundaries and headers
 - Error control: error detection and correction
 - Media access control: arbitrating access to the “link”
 - Bridging, switching, ...: extending network size

- Described “by example”
Outline

- PHY and DL functions
- Modulation
- Datalink layer
 - Media access control
 - Scaling up

What is Modulation?

- The sender changes a signal in a way that the receiver can recognize - conveys information
- Ways to modulate a signal (think: sinusoidal wave)
 - Change frequency, phase, or amplitude
 - Similar to AM/FM radio:
 - But we encode bits!
 - Analogy from music:
 - Volume: Amplitude Modulation (AM)
 - Pitch: Frequency Modulation (FM)
 - Timing: Phase Modulation (PM)

Transferring Information

- Information transfer is a physical process
 - “The wireless telegraph is not difficult to understand. The ordinary telegraph is like a very long cat. You pull the tail in New York, and it meows in Los Angeles. The wireless is exactly the same, only without the cat.”
- In this class, we generally care about
 - Electrical signals (on a wire)
 - Optical signals (in a fiber)
 - RF signals (wireless)
 - More broadly: electromagnetic signals

Binary Modulation

- AM: change the strength of the signal
- FM: change frequency:
- PM: change phase
Looks Straightforward, but ...

Bad things happen to the signal as it travels to receiver:

- Noise: “random” energy is added to the signal
- Attenuation: some of the signal’s energy leaks away
- Dispersion: signal is distorted due to frequency-dependent effects distorts the signal
- These effects get worse with distance and depend on the transmission medium

What is the impact of a Bad Signal?

- The receiver may no longer be able to determine what bits were sent, resulting in bit errors
 - Bit error rate increases with the bit rate
- The result is that we need to limit the bit rate and/or the length of the links
- For wired network, that standard specifies both
 - E.g., standards for 10 Mbs, 100 Mbs, .. Ethernet
- For wireless networks many other factors impact the bit error rate – requires more complex solutions
 - Wait for wireless lectures

Sketch of Solution

- Solutions for optimizing bandwidth and recovering from errors fall in two classes:
 1. Retransmission by a higher layer protocol
 2. Coding: add redundancy to the bit stream so the receiver can recover from the errors (FEC)
- Can be used in any layer of the stack, but a common approach is:
 1. Retransmission in datalink or transport protocol
 2. FEC in physical layer

Outline

- PHY and DL functions
- Modulation
- Datalink layer
 - Media access control
 - Scaling up
Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - Add header, mark and detect frame boundaries
- Flow control: avoid that sender outruns the receiver
- Error control: error detection and correction to deal with bit errors.
 - May also include other reliability support, e.g. retransmission
- Media access: controlling which frame should be sent next over a link.
- Bridging, switching: extend the size of the network

Datalink Classification

- **Switch-based**
 - ATM, framerelay
- **Packet Switching**
 - Bridged LANs
- **Multiple Access**
 - Token ring, FDDI, 802.11
 - Ethernet, 802.11, Aloha
- **Random Access**
 - Virtual Circuits
 - Bridged LANs
 - ATM, framerelay
 - Bridged LANs

Datalink Architectures

- Multiple access networks - contention based.
 - Multiple hosts are sharing the same transmission medium
 - Used in LANs and wireless
 - Access control is distributed and much more complex
- Switches connected by point-to-point links -- store-and-forward.
 - Used in WAN, LAN, and for home connections
 - Conceptually similar to “routing”
 - But at the datalink layer instead of the network layer
 - MAC = (local) scheduling

Multiple Access: How to Share a Wire (or the wireless ether)

- Problem: how do you prevent nodes from “talking” at the same time – causes a “collision”
- Two classes of solutions:
 - Explicit coordination: schedule transmissions sequentially
 - Randomly access medium: send and hope you get lucky
How Can We Avoid Collisions?

- Ask for permission
 - “Coordinator” picks who goes next if there is contention
- Many protocol solutions exist
 - FDDI, WiFi PCF, ...
- Go for it
 - But listen before you talk
 - But sometimes people start talking at the same time
 - Randomly try again
 - Ethernet, WiFi DCF, ...

Random Access Protocols – more later

- When a node has a packet to send
 - Transmit at full channel data rate R
 - No a priori coordination among nodes
- If you are lucky, receiver will receive packet, but ...
- Multiple simultaneous transmissions → “collision”
- Random access MAC protocol specifies:
 - How to avoid and/or detect collisions
 - How to recover from collisions (e.g., via retransmissions)
- Examples of random access MAC protocols:
 - Slotted ALOHA and ALOHA
 - CSMA/CD (~Ethernet) and CSMA/CA (~WiFi)

Scheduled Access MACs – more later

- Reservation systems
 - Central controller
 - Distributed algorithm, e.g., using reservation bits in frame
- Polling: controller polls each node
- Token ring: token travels around ring and allows nodes to send one packet
 - Distributer version of polling
 - FDDI, ...

How Well Do These Work?

- Random access is very effective in practice
 - Most LANs are under-utilized
 - Zero overhead and delay when there is no contention
- Scheduled access protocols tend to have non-trivial overhead and delay
 - Even if there is no contention!
- Transmission is fairly reliable in practice
 - Protocols can detect collisions reliably and corrupted packets are transmitted
 - Error rates due to random bit errors are very low in practice
Outline

• PHY and DL functions
• Modulation
• Datalink layer
 • Media access control
• Scaling up
 • Number of nodes
 • Bit rate

Scaling Up the Number of Nodes

• What breaks when we keep adding people to the same “wire”? yak yak…

Scaling Up the Ethernet Speed

• Technology improvements lead to higher bit rates: 10Mbps, 100Mbps, 1Gbps, 40 Gbps, ...
• Problem: carrier sense becomes completely ineffective
 • For example, for 40 Gps links
 → 0.3 microsec to send a maximum sized Ethernet frame
 → forget about carrier sense
• Solution: use a bridge or switch-based design
 • And call it Ethernet!

Datalink Architectures

• Multiple access networks - contention based.
 • Multiple hosts are sharing the same transmission medium
 • Used in LANs and wireless
 • Access control is distributed and much more complex
• Switches connected by point-to-point links -- store-and-forward.
 • Used in WAN, LAN, and for home connections
 • Conceptually similar to “routing”
 • But at the datalink layer instead of the network layer
 • MAC = (local) scheduling
Scaling Up Solution

- Break up the network in smaller networks
- Smaller “collision domain” - fewer nodes per network
 - Also shorter wires
- Networks can transmit packet in parallel – more capacity
- Uses “bridges” (switches) to connect the networks
 - Bridges must forward the packets when needed
- Challenge: how do you know which packets to copy and where?

Frame Forwarding

- Bridge/switch has a table that shows for each MAC Address which port to use for forwarding
- For every packet, the bridge “looks up” the entry for the packets destination MAC address and forwards the packet on that port.
 - Other packets are broadcast – why?
 - Timer is used to flush old entries

Switch Architecture

- Packets come in one interface, forwarded to output interface based on address.
 - Same idea for bridges, switches, routers: address look up differs
- Control processor manages the switch and executes higher level protocols.
 - E.g. routing, management, ...
- The switch fabric directs the traffic to the right output port.
- The input and output ports deal with transmission and reception of packets.

Transparent Bridges

- Design goals:
 - Self-configuring without hardware or software changes
 - Bridge does not impact the operation of the individual LANs, i.e., a set of bridged LANs acts as a single LAN
- Three parts to making bridges transparent:
 1) Forwarding frames
 2) Learning addresses/host locations
 3) Spanning tree algorithm
Learning Bridges

- Manually filling in bridge tables?
 - Time consuming, error-prone
- Keep track of source address of packets arriving on every link, showing what segment hosts are on
 - Fill in the forwarding table based on this information

Spanning Tree Protocol Overview

Embed a tree that provides a single unique path to each destination:
1) Elect a single bridge as a root bridge
2) Each bridge calculates the distance of the shortest path to the root bridge
3) Each LAN identifies a designated bridge, the bridge closest to the root. It will forward packets to the root.
4) Each bridge determines a root port, which will be used to send packets to the root
5) Identify the ports that form the spanning tree

But Does it Scale?

- More complex topologies can provide redundancy.
 - Especially important in larger networks
- But this creates a problem: loops!
- Solution: spanning tree

Spanning Tree Algorithm Steps

- Root of the spanning tree is the bridge with the lowest identifier.
 - All ports are part of tree
- Each bridge finds shortest path to the root.
 - Remembers port that is on the shortest path
 - Used to forward packets
- Select for each LAN the designated bridge that has the shortest path to the root.
 - Identifier as tie-breaker
 - Responsible for that LAN
Spanning Tree Algorithm

Each node sends configuration message to all neighbors.
- Identifier of the sender
- Id of the presumed root
- Distance to the presumed root
- E.g. B5 sends (B5, B5, 0)

When B receives a message, it decides whether the solution is better than their local solution.
- A root with a lower identifier?
- Same root but lower distance?
- Same root, distance but sender has lower identifier?

After convergence, each bridge knows the root, distance to root, root port, and designated bridge for each LAN.

Spanning Tree Algorithm Example

- Node B2:
 - Sends (B2, B2, 0)
 - Receives (B1, B1, 0) from B1
 - Sends (B2, B1, 1) “up”
 - Continues the forwarding forever

- Node B1:
 - Will send notifications forever

- Node B7:
 - Sends (B7, B7, 0)
 - Receives (B1, B1, 0) from B1
 - Sends (B7, B1, 1) “up” and “right”
 - Receives (B5, B5, 0) - ignored
 - Receives (B5, B1, 1) - better
 - Continues forwarding the B1 messages forever to the “right”

Spanning Tree Algorithm (part 2)

Each bridge B can now select which of its ports make up the spanning tree:
- B’s root port
- All ports for which B is the designated bridge on the LAN

Bridges can not configure their ports.
- Forwarding state or blocked state, depending on whether the port is part of the spanning tree

Root periodically sends configuration messages and bridges forward them over LANs they are responsible for.

Ethernet Switches

- Bridges make it possible to increase LAN capacity.
 - Packets are no longer broadcasted - they are only forwarded on selected links
 - Adds a switching flavor to the broadcast LAN
- Ethernet switch is a special case of a bridge: each bridge port is connected to single host.
 - Simplifies the protocol and hardware used (only two stations on the link) – no longer full CSMA/CD
 - Can make the link full duplex (really simple protocol!)
 - Can have different port speeds on the same switch
Ethernet Evolution

Early Implementations
- A Local Area Network
- MAC addressing, non-routable
- BUS or Logical Bus topology
- Collision Domain, CSMA/CD
- Bridges and Repeaters for distance/capacity extension
- 1-10 Mbps: coax, twisted pair (10BaseT)

Current Implementations
- Switched solution
- Little use for collision domains
- 80% of traffic leaves the LAN
- Servers, routers 10 x station speed
- 10/100/1000 Mbps, 10Gig coming: Copper, Fiber
- 95% of new LANs are Ethernet

Typical Campus Topology

- **WAN**
- **LAN**
- **Ethernet or 802.3**

- **Router**
- **Switch**
- **Server**

- **Capacity?**
- **Reliability?**