Today’s Lecture

• Administrivia

• Why are networks important?
 • What is a network?
 • How is the Internet Unique?
 • Internet design

• A whirlwind tour of the course

Teaching Staff

• Instructors:
 • Justine Sherry and Peter Steenkiste
• Teaching assistants:
 • Kenneth Yang
 • Viswesh Narayanan
 • Yijia Cui
 • Xinyu Liu
• staff-441@cs.cmu.edu → course staff
 • Please use this instead of emailing just one of us!
• Office hours, slides, … on the web site.

Course Goals

• Become familiar with the principles and practice of data networking
 • Routing, transport protocols, naming, ...
 • Design of networks and services
• Learn how to write applications that use the network
 • A web server with HTTPS and CGI support
• Gain an understanding of network internals in a hands-on way
 • Content delivery and a TCP-style reliable protocol
 • How to optimize video distribution
Course Format

- ~28 lectures
 - Cover the "principles and practice"
 - Complete readings before lecture
- 4 homework assignments
 - "Paper": Do you understand and can you apply the material?
 - "Lab": Illustrate networking concepts
 - Preparation for midterm and final
- 3 programming projects
 - How to use and build networks / networked applications
 - Application-layer programming
 - Larger, open-ended group projects. Start early!
- Midterm and final
 - Emphasis on understanding of course material

Course has 3 Projects

- Web server: example of a widely used service accessed using a standard protocol
 - Implement GET, PUT, HTTPS, and cgi
- Bit torrent: exposure to network internals
 - Implement transport level functions
- Video streaming: end-to-end infrastructure for delivering high quality video
 - Uses load sensitive QoE optimization, content delivery networks, DNS redirect, ...

Recitation Sections

- Key 441 objective: system programming in C
- Different from what you’ve done before!
 - Networks and services must run indefinitely
 - Must handle all errors! Must be secure
 - Interfaces specified by documented protocols
 - Concurrency involved (inter and intra-machine)
 - Must have good testing methods
- Recitations address this
 - “A system hackers’ view of software engineering”
 - Help develop practical skills needed in the projects (and beyond)

Why Three?

Somebody needs to build the apps!
- P1: HTTP server
Somebody needs to develop the network internals!
- P2: content delivery
Somebody needs to optimize user Quality of Experience!
- P3: Video distribution
Project Logistics

- First project is solo – others are in teams of 2
- We will use piazza for communication
- You must use version control – git
 - We are flexible about where you keep the repository
- Testing is an important part of code development
 - You will have to write your own test scripts
 - We will provide some example tests but grading will use a more extensive set of tests
 - We will use Autolab for some of the grading
- See web page and course handouts for details

Administrative Stuff

- Watch the course web page
 - http://www.cs.cmu.edu/~prs/15-441-F17/
 - Handouts, readings, ...
 - Always check here first
- Office hours posted on web page
 - Make an appointment if you have a conflict
- Course secretary
 - Ms. Angella Malloy
 - Pick up graded assignments, ...

Grading

- Roughly equal weight in projects and testing
 - 45% for Projects I, II and III
 - 18% for Midterm exam
 - 27% for Final exam
 - 10% for Homework
- You MUST demonstrate competence in both projects and tests to pass the course
 - Fail either and you fail the class!

Policy on Collaboration

- Working together is important
 - Discuss course material in general terms
 - Work together on program debugging, ...
 - Collaborating on projects P2 and P2
- Final submission must be your own work
 - Homeworks, midterm, final, projects
- Submitting or using someone else’s work is an academic integrity violation (i.e., cheating)
 - We will follow the university policy on reporting violations
 - Voluntarily sharing your work is also a policy violation
- Web page has details, e.g., university policy, etc.
Code Reuse in Projects

- The project code you submit must be your work!
 - Exception is the starter code provided by us, standard libraries, packages mentioned in the project handout
 - If in doubt, ask the course staff
- We use tools to compare submissions
 - These tools are very good
 - Don't compete with them (the odds are against you)
- Some students have put their projects on the web
 - Posting and using the code is a form of cheating
 - If you can find the code, so can we

Late Work and Regrading

- Late work will receive a 15% penalty/day
 - No assignment can be more than 2 days late
 - Only exceptions are documented illness and family emergencies
- Requests for regrading must be submitted in writing to course secretary within 2 weeks.
 - Do not contact us by e-mail
 - Office hours are fine for discussion but not for regrading
 - Regrading of assignment will be done by original grader
- No assignments with a “short fuse”
 - Homeworks: ~1-2 weeks - Projects: ~4 weeks
 - Start on time!
 - A 4 week project cannot be completed in a week (really)

The Slides

- The slides are a resource that is shared by the many instructors of 15-441/15-641
 - Also some sharing with 18-345
- They include contributions from Peter Steenkiste, Srini Seshan, Dave Andersen, Hui Zhang, Justine Sherry, Eric Anderson, and others

Today’s Lecture

- Administrivia
- Why are networks important?
 - What is a network?
 - What is the Internet
 - Internet design
- A whirlwind tour of the course
What is a Network?

- An infrastructure that allows (distributed) “users” to communicate with each other
 - People, devices, …
 - By means of voice, video, text, …
 - We focus on electrical/optical/RF/.. (not trucks)
- It is assumed that the infrastructure is shared by many users
 - Point to point links are not very interesting
 - Value increases with the number of users!

Basic Building Block: Nodes, Links

- Simplest example: 2 nodes
 - Sender changes voltage, frequency, …
 - Or maybe it is optical or wireless?
- But receiver must “understand” sender – protocols
 - More on this later
- Okay… what about more nodes?
- How about a million?

Scaling the Network

(N^2) Wires for everybody!

Or one wire

But First a bit of History

Networks Have Been Around for a Long time!

- Courier: physical transport of the message
 - Messenger pigeons, pony express, FedEx
- Telegraph: message is transmitted across a network using signals – much faster!
 - Drums, beacons, mirrors, smoke, flags,
 - Light, electricity
Electric Telegraph Networks

- Electric telegraph networks exploded
 - Message switching & Store-and-Forward operation
 - Key elements: Addressing, Routing, Forwarding
- Optical telegraph networks disappeared

Bell’s Telephone

- Alexander Graham Bell (1875) working on harmonic telegraph to multiplex telegraph signals
- Discovered voice signals can be transmitted directly
 - Microphone converts voice pressure variation (sound) into analog electrical signal
 - Loudspeaker converts electrical signal back into sound
- Telephone patent granted in 1876
- Bell Telephone Company founded in 1877

Signal for “ae” as in cat

Links and Switches in Early Telephone Networks

And Some More Examples …

- Television network
 - Over the air
 - Cable TV
 - Satellite
- Radio broadcast
- Many private networks
 - E.g., for first responders, military, ..
What Do All These Networks Have in Common?

• They are designed for a single application!

• How about the Internet?

Today’s Lecture

• Administrivia

• Why are networks important?
 • What is a network?
 • What is the Internet
 • Internet design

• A whirlwind tour of the course

What about the Internet

• An inter-net: a network of networks.
 • Networks are connected using routers and other devices, e.g., for security, accounting, …
 • Networks can use diverse technologies
 • Typically managed by different organization
 • The Internet: the interconnected set of networks of the Internet Service Providers (ISPs)
 • About ~30,000 “transit” ISPs make up the Internet
 • Many more “edge” networks

What is the Objective of the Internet?

• Enable communication between diverse applications on diverse devices …
 • Web, peer-to-peer, video streaming, distributed processing, transactions, map-reduce, video and audio conferencing, …
 • … over very diverse infrastructures
 • The “Internet”, WiFi and cellular, data center networks, corporate networks, dedicated private networks, …

• In contrast: previous networks were special purpose and homogeneous in terms of technology

• The Internet is an “engineered system”
 • Many design choices – the focus of the course!
 • Must understand the requirements – but they change over time!
Networks Juggle Many Goals

- Support rich set of applications
- Efficiency – resource use, cost
- The “ilities”:
 - Evolvability
 - Managability
 - Security (securability, if you must)
 - Scalability
- Ease of:
 - Deployment, managability
 - Creating useful applications

Must also Deal with “The Real World”

- Economics and public policy play a big role in the design of the Internet
 - ISPs are competing for customers but they must also work together
 - They must make money – no ISPs, no Internet
- Public policy looks after user interests and tries to promote competition and innovation
- Users will only use the network if they get value out of it
 - Concerns such as privacy can stifle use

Example: Efficiency

- Is “one wire per user” an efficient solutions for the Internet?
 - No! Why?
- What is a better solutions?

Statistical Multiplexing – Packet Switching

- Users share the wires at a fine grain - packets
- Links are never idle when there is traffic - Efficient!
- But creates many challenge:
 - Congestion, packet losses, fairness, …
Example: Scalability

• How do you design a network to be very scalable?

• Network must be very modular …
 • More on this in lecture 2
 • … and simple
 • Or at least no more complex than needed

Internet Design

• In order to inter-operate, all participating networks must follow a common set of rules
 • Protocols = interfaces between modules
 • E.g., address format, header info, packet size limit, ..
 • Provides a simple "service model"
 • I.e., the commitment made to applications
 • Internet: best-effort – packets can get lost, etc.
 • But some applications need reliable data delivery, low latency, …
 • Optional, outside of core architecture

Today’s Lecture

• Administrivia

• Why are networks important?
 • What is a network?
 • What is the Internet
 • Internet design

• A whirlwind tour of the course

A Horizontal View: Networks

• Edge: campus, home, cloud, ..
 • End-end protocols
 • Video, skype, web browsing, CDN, ..
 • Security, TLS, ..
 • Wireless, mobility
• Core: Internet service providers
 • IP, BGP, ICMP, ..
 • Traffic engineering, congestion, …
 • DDoS, QoS, ..
A Vertical View: Protocols

- Application:
 - HTTP, SMTP, ...
 - Content retrieval: web, video, peer-peer, CDNs, ...
 - Authentication, ...
- Core protocols:
 - Packet, circuits, ...
 - TCP, IP, routing, ...
 - IPv6, mobility, ...
 - QoS, traffic mgt, ...
- Infrastructure:
 - Ethernet, wifi, cellular, last mile, ...

Whirlwind Tour of the Course

- Core networking protocols: IP, dealing with errors and congestion, routing, ...
- Optimizing performance: QoS techniques, caching, CDNs, peer-peer, ...
- Making it work well: security, management, ...
- IP everywhere: the Internet, last mile, wireless, mobility, data center, video, IP-TV, skype, ...
- Infrastructure: Ethernet, WiFi, cellular, ...
- Focus is on today’s Internet but also trends
 - What will the Internet look like in 10, 20, 30 years?

Infrastructure

- Why do we have different types of “wires”?
 - And why do I care?
 - Ethernet is very old, so why is it so fast?
 - Can’t they find something better? (they did)
 - What are the limits of some of the technologies?
 - Both physical and protocol limits
 - Continues to evolve very quickly – wireless!

Core Networking Protocols

Think: traffic on the roads

- How do I found a path to my destination
- How do I specify addresses
- What if my car breaks down?
- How do I deal with traffic jams
- …
Optimizing Performance

- Intuitively: lots of bandwidth!
 - But not really: there is no free bandwidth
- But there is more to it:
 - Latency is often more critical!
 - For voice and video – can I offer guarantees?
 - Can I beat the speed of light?
 - Hint: this can make you rich
 - Why did we use peer to peer networks?
 - And why did they (mostly) go away?

Making the Network Work Well

- Good technology is only a small part of the puzzle
- Deployment and management issues are equally (or more) critical
 - Involves many people, high cost, big impact on QoE
- How do I secure my network?
 - Lots of bad guys: DOS, compromised hosts, privacy leaks, botnets, …
- How I manage resources, reduce operator errors, deal with failures, …
 - And how does it differ in LAN, WAN, wireless, …

IP Everywhere

- Using IP technology has become attractive
 - Cheap commodity hardware, lots of tools, people trained in the technology, end-to-end support, …
- The (public) Internet: our focus
 - How do you optimize "the web": CDNs, caching, …
- Data centers: very special requirements
 - Map-reduce, 3-tier business apps, load balancing, …
- IP TV, voice/video conferencing:
 - Very high QoE expectations
- Wireless and mobile apps
 - For many users, primary way of accessing Internet
- Residential networking

Sounds Great! How Do I Get In?

- We currently still have a waiting list
- If you are not taking the course, please drop it ASAP
- Priority will be given to students who
 1. Have taken prerequisite (15/18-213 or 15-513)
 - If you have not taken this course you will have to argue that you have an equivalent background
 2. Attend class (fill in form!)
- And you must have enough credits!
- Historically, all qualified students who persist by attending class get into the course