Reminder: Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - Add header, mark and detect frame boundaries, ...
- Error control: error detection and correction to deal with bit errors.
 - Based on error coding or retransmissions
- Flow control: avoid sender overrunning receiver.
- Media access control (MAC): which frame should be sent over the link next.
 - Easy for point-to-point links
 - Harder for multi-access links: who gets to send?

Datalink Architectures

- Switches connected by point-to-point links -- store-and-forward.
 - Used in WAN, LAN, and for home connections
 - Conceptually similar to “routing”
 - But at the datalink layer instead of the network layer
 - MAC = (local) scheduling
- Multiple access networks - - contention based.
 - Multiple hosts are sharing the same transmission medium
 - Used in LANs and wireless
 - Access control is distributed and much more complex
Datalink Classification

Switch-based
- Virtual Circuits: ATM, framerelay
- Packet Switching: Bridged LANs

Multiple Access
- Scheduled Access: Token ring, FDDI, 802.11
- Random Access: Ethernet, 802.11, Aloha

Problem: Sharing a Wire

- Just send a packet when you are ready
 - Does not work well: collisions! More on this later
 - Natural scheme – listen before you talk ...
 - Works well in practice
 - A cheap form of coordination
 - But sometimes this breaks down
 - Why? How do we fix/prevent this?

Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R
 - No *a priori* coordination among nodes
- Two or more transmitting nodes \(\rightarrow\) “collision”
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - CSMA and CSMA/CD
 - Wireless protocols

Ethernet MAC Features

- Carrier Sense: listen before you talk
 - Avoid collision with active transmission
- Collision Detection during transmission
 - Listen while transmitting
 - If you notice interference \(\rightarrow\) assume collision
 - Abort transmission immediately – saves time
- Why didn’t ALOHA have this?
 - Signal strength is reduced by distance for radio
 - May not hear remote transmitter – hidden terminal
 - Very difficult for radios to listen and transmit
 - More on this later in the course
Ethernet MAC – CSMA/CD

- Carrier Sense Multiple Access/Collision Detection

![Diagram of Ethernet MAC - CSMA/CD with decision flow and backoff calculation]

Ethernet CSMA/CD: Making it work

- **Jam Signal:** make sure all other transmitters are aware of collision; 48 bits;
- **Exponential Backoff:**
 - If deterministic delay after collision, collisions will occur again in lockstep
 - Why not random delay with fixed mean?
 - Few senders → needless waiting
 - Too many senders → too many collisions
 - **Goal:** adapt retransmission attempts to estimated current load
 - heavy load: random wait will be longer

Ethernet Backoff Calculation

- Delay is set as K slots – control K
- Exponentially increasing random delay
 - Infer senders from # of collisions
 - More senders → increase wait time
 - First collision: choose K from \{0,1\}; delay is K x 512 bit transmission times
 - After second collision: choose K from \{0,1,2,3\}...
 - After ten or more collisions, choose K from \{0,1,2,3,4,....,1023\}

Minimum Packet Size

- Packets must be long enough to guarantee all nodes observe collision
- Depends on packet size and length of wire
 - Propagation delay
- Min packet length > 2x max prop delay
Delay & Collision Detection

- Speed in cable $\sim 60\% \times c \sim 1.8 \times 10^8$ m/s
- 10Mb Ethernet, 2.5km cable
 - ~ 12.5us delay
 - Introduced repeaters (max 5 segments)
 - Worst case – 51.2us round trip time!
 - Corresponds to 512 bits
- Also used as slot time = 51.2us for backoff
 - After this time, sender is guaranteed sole access to link
 - Specifically, will have heard any signal sent in the previous slot

Scaling Ethernet

- What about scaling? 10Mbps, 100Mbps, 1Gbps, ...
 - Use a combination of reducing network diameter and increasing minimum minimum packet size
- Reality check: 40 Gbps is 4000 times 10 Mbps
 - 10 Mbps: 2.5 km and 64 bytes -> silly
 - Solution: switched Ethernet – see lecture 3
- What about a maximum packet size?
 - Needed to prevent node from hogging the network
 - 1500 bytes in Ethernet = 1.2 msec on original Ethernet
 - For 40 Gps -> 0.3 microsec -> silly and inefficient

Things to Remember

- Trends from CSMA networks to switched networks
 - Need for more capacity
 - Low cost and higher line rate
- Emphasis on low configuration and management complexity and cost
 - Fully distributed path selection
- Trends are towards “Software Defined Networks”
 - Network is managed by a centralized controller
 - Allows for the implementation of richer policies
 - Easier to manage centrally
 - Already common in data centers

Outline

- Ethernet
- Wireless networking
 - Wireless Ethernet
 - Aloha
 - 802.11
Wireless Communication

- Wireless communication is based on broadcast
 - A, B, and C can all hear each other’s signal
 - Looks like Ethernet!
- Why not use CSMA/CD?
 - Carrier-sense Multiple Access / Collision Detection
- Well, it is not that easy

What is the Problem? There are no Wires!

- Attenuation is very high!
 - Signal is not contained in a wire
 - Attenuation is $1/D^2$ for distance D
- In addition, there is significant noise and interference
 - No wire to protect the signal
- It is much harder for nodes to communicate
 - Much higher error rates
 - Not all nodes in the wireless network can hear each other

Implications for Wireless Ethernet

- Collision detection is not practical
 - Ratio of transmitted signal power to received power is too high at the transmitter
 - Transmitter cannot detect competing transmitters (is deaf while transmitting)
 - So how do you detect collisions?
- Not all nodes can hear each other
 - Ethernet nodes can hear each other by design
 - “Listen before you talk” often fails
 - Hidden terminals, exposed terminals
 - Capture effects
- Made worse by fading
 - Changes over time!

Hidden Terminal Problem

- Lack signal between S1 and S2 and cause collision at R1
- Severity of the problem depends on the sensitivity of the carrier sense mechanism
 - Clear Channel Assessment (CCA) threshold
Exposed Terminal Problem

- Carrier sense prevents two senders from sending simultaneously although they do not reach each other’s receiver.
- Severity again depends on CCA threshold:
 - Higher CCA reduces occurrence of exposed terminals, but can create hidden terminal scenarios.

Aloha – Basic Technique

- First random MAC developed:
 - For radio-based communication in Hawaii (1970)
- Basic idea:
 - When ready, transmit.
 - Receivers send ACK for data.
 - Detect collisions by timing out for ACK.
 - Recover from collision by trying after random delay.

Collisions in ALOHA

- Original ALOHA had no synchronization.
- Pkt needs transmission:
 - Send without awaiting for beginning of slot.
- Many chances for collision:
 - Pkt sent at t_i collide with other pkts sent in $[t_i-1, t_i+1]$.

Slotted Aloha

- Time is divided into equal size slots:
 - Equal to packet transmission time.
- Node (w/ packet) transmits at beginning of next slot.
- If collision: retransmit pkt in future slots with probability p, until successful.
Aloha Throughput Comparison

- It is possible to calculate throughput for Aloha
 - Many assumptions: exponential arrival, transmitters independent, ...
- Bad news: maximum throughput is low
- Slotted Aloha (a variant) can achieve higher throughput
 - But has higher latency, especially under low load

Outline

- Ethernet
- Wireless networking
 - Wireless Ethernet
 - Aloha
 - 802.11

History

- Aloha wireless data network
- Car phones
 - Big and heavy “portable” phones
 - Limited battery life time
 - But introduced people to “mobile networking”
 - Later turned into truly portable cell phones
- Wireless LANs
 - Originally in the 900 MHz band
 - Later evolved into the 802.11 standard
 - Later joined by the 802.15 and 802.16 standards
- Cellular data networking
 - Data networking over the cell phone
 - Many standards – throughput is the challenge

Standardization of Wireless Networks

- Wireless networks are standardized by IEEE
- Under 802 LAN MAN standards committee

<table>
<thead>
<tr>
<th>ISO OSI 7-layer model</th>
<th>IEEE 802 standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Logical Link Control</td>
</tr>
<tr>
<td>Presentation</td>
<td>Medium Access (MAC)</td>
</tr>
<tr>
<td>Session</td>
<td>Physical</td>
</tr>
<tr>
<td>Transport</td>
<td>Physical (PHY)</td>
</tr>
<tr>
<td>Network</td>
<td></td>
</tr>
<tr>
<td>Data Link</td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
</tr>
</tbody>
</table>
The 802 Class of Standards

- List on next slide
- Some standards apply to all 802 technologies
 - E.g. 802.2 is LLC
 - Important for inter operability
- Some standards are for technologies that are outdated
 - Not actively deployed anymore
 - E.g. 802.6

Wireless Collision Avoidance

- Problem: two nodes, hidden from each other, transmit complete frames to base station
- Wasted bandwidth for long duration!
 - Plus also exponential backoff before retransmissions
- Solution: Small reservation packets
 - Nodes track reservation interval with internal “network allocation vector” (NAV)
- Note that nodes still do “physical” carrier sense
 - “Listen before you talk” often works and is cheap

Collision Avoidance: RTS-CTS Exchange

- Explicit channel reservation
 - Sender: send short RTS: request to send
 - Receiver: reply with short CTS: clear to send
 - CTS reserves channel for sender, notifying (possibly hidden) stations
- RTS and CTS short:
 - Collisions less likely, of shorter duration
 - End result similar to collision detection
- Avoid hidden station collisions
- Not widely used (not used really)
 - Overhead is too high
 - Not a serious problem in typical deployments
IEEE 802.11 MAC Protocol

- RTS/CTS implemented using NAV: Network Allocation Vector
 - Also used with data packets
- 802.11 frame has transmission time field
- Others (hearing data) defer access for NAV time units
- How do we ensure the node can send

How About Exposed Terminal?

- Can increase the “carrier-sense” threshold
 - Signal needs to be stronger before node defers
- Could this create other problems?
 - Yes - not really practical
- Exposed terminals are difficult to deal with
 - Even hard to detect them!
- Good news – they are
 - So we live with them