Transferring Information

- Information transfer is a physical process
- In this class, we generally care about
 - Electrical signals (on a wire)
 - Optical signals (in a fiber)
 - Wireless signals
 - More broadly, EM waves
- Information carriers can also be
 - Sound waves
 - Quantum states
 - Ink & paper, etc.

From Signals to Packets

Packet Transmission

<table>
<thead>
<tr>
<th>Packet</th>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Packets

- Header/Body

Bit Stream

- 0 0 1 0 1 1 1 0 0 0 1

“Digital” Signal

Analog Signal
Today’s Lecture

- Modulation.
- Bandwidth limitations.
- Multiplexing.
- Media: Copper, Fiber, Optical, Wireless.

What is Modulation?

- The sender changes a signal in a way that the receiver can recognize - conveys information
- Ways to modulate a signal (think: sinusoidal wave)
 - Change frequency, phase, or amplitude
- Similar to AM/FM radio:
 - But we encode bits!
- Many forms of modulation!
 - Basic AM, FM, and PM - OK for “easy” environments
 - Wireless environments are very challenging – uses much more aggressive forms of modulation

Binary Modulation

- AM: change the strength of the signal
 - 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0
- FM: change frequency:
 - 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0
- PM: change phase

Let us Look at Some Questions

- Is there a limit to the capacity of a wire?
- How do the properties of copper, fiber, and wireless compare?
 - Price, bandwidth, easy of deployment, ...
- What limits the physical size of the network?
 - Or: how long can the wires be
- Does the modulation technique matter?
- How can multiple hosts communicate over the same wire at the same time?
Why Different Modulation Methods?

Offers choices with different tradeoffs:
- Transmitter/Receiver complexity
- Power requirements
- Bandwidth
- Medium (air, copper, fiber, ...)
- Noise immunity
- Range
- Multiplexing options

Bandwidth

- Bandwidth is width of the frequency range in which the Fourier transform of the signal is non-zero.
- Sometimes referred to as the channel width
- Or, where it is above some threshold value (Usually, the half power threshold, e.g., -3dB)
- dB - short for decibel
 - Defined as \(10 \times \log_{10}(P_1/P_2)\)
 - When used for signal to noise: \(10 \times \log_{10}(S/N)\)
- Also: dBm – power relative to 1 milliwatt
 - Defined as \(10 \times \log_{10}(P/1 \text{ mW})\)

Signal = Sum of Waves

\[
\text{Signal} = \text{Sum of Waves} = 14 + 1.3 \times 11 + 0.56 \times 11 + 1.15 \times 11
\]

The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
 - What frequencies are present and what is their strength (energy)
- Channel properties can be frequency dependent
 - E.g., attenuation
Transmission Channel Considerations

- Every medium supports transmission in a certain frequency range
 - Good transmission inside range
 - Outside this range, effects such as attenuation, .. degrade the signal significantly
- Transmit and receive hardware will try to maximize the useful bandwidth, given channel properties
 - Tradeoffs between cost, distance, bit rate
 - Very hard to do for wireless!
- As technology improves, these parameters change, even for the same the wire

Example: Modem Rates

<table>
<thead>
<tr>
<th>Year</th>
<th>Modem Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>100</td>
</tr>
<tr>
<td>1980</td>
<td>1000</td>
</tr>
<tr>
<td>1985</td>
<td>10000</td>
</tr>
<tr>
<td>1990</td>
<td>100000</td>
</tr>
<tr>
<td>1995</td>
<td>1000000</td>
</tr>
<tr>
<td>2000</td>
<td>10000000</td>
</tr>
</tbody>
</table>

Attenuation & Dispersion

- Different frequencies in the signal are “abused” differently
- Especially bad in wireless
 - Changes over time – frequency selective fading (bad!)
- Results in distortion of the signal

Limits to Speed and Distance

- Noise: “random” energy is added to the signal.
- Attenuation: some of the energy in the signal leaks away.
- Dispersion: attenuation and propagation speed are frequency dependent.
 (Changes the shape of the signal)

- Effects limit the data rate that a channel can sustain.
 - But affects different technologies in different ways
- Effects become worse with distance.
 - Tradeoff between data rate and distance
The Nyquist Limit

- A noiseless channel of width H can at most transmit a binary signal at a rate $2 \times H$.
 - Assumes binary amplitude encoding

![Waveform diagram with 0s and 1s]

How to Get Past the Nyquist Limit

- Instead of 0/1, use lots of different values.
- (Remember, the channel is noiseless.)
- Can we really send an infinite amount of info/sec?

![Waveform diagram with multiple values]

The Nyquist Limit

- A noiseless channel of width H can at most transmit a binary signal at a rate $2 \times H$.
 - Assumes binary amplitude encoding
 - E.g., a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second

![Waveform diagram with 0s and 1s]

Hmm, I once bought a modem that did 54K????

Past the Nyquist Limit

- More aggressive encoding can increase the bandwidth
 - Example: modulate multi-valued symbols
 - Modulate blocks of “digital signal” bits, e.g., 3 bits = 8 values
 - Often combine multiple modulation techniques

![Waveform diagrams of PSK and PSK+AM]

- Problem? Noise!
 - The signals representing two symbols are less distinct
 - Noise can prevent receiver from decoding them correctly
Capacity of a Noisy Channel

- Places upper bound on channel capacity, while considering noise
- Shannon’s theorem:
 \[C = B \log_2(1 + S/N) \]
 - C: maximum capacity (bps)
 - B: channel bandwidth (Hz)
 - S/N: signal to noise ratio of the channel
 Often expressed in decibels (db): \[10 \log(S/N) \]
- Example:
 - Local loop bandwidth: 3200 Hz
 - Typical S/N: 1000 (30db)
 - What is the upper limit on capacity?
 \[C = 3200 \times \log_2(1 + 1000) = 31.9 \text{ Kbps} \]

Today’s Lecture

- Modulation.
- Bandwidth limitations.
- Multiplexing.
- Media: Copper, Fiber, Optical, Wireless.

Supporting Multiple Channels

- Multiple channels can coexist if they transmit at a different frequency, or at a different time, or in a different part of the space.
 - Three dimensional space: frequency, space, time
- Space can be limited using wires or using transmit power of wireless transmitters.
- Frequency multiplexing means that different users use a different part of the spectrum.
 - Similar to radio: 95.5 versus 102.5 station
- Controlling time (for us) is a datalink protocol issue.
 - Media Access Control (MAC): who gets to send when?

Time Division Multiplexing

- Different users use the wire at different points in time.
- Aggregate bandwidth also requires more spectrum.
Carrier Modulation

- Baseband modulation: send the “bare” signal.
- Carrier modulation: use the signal to modulate a higher frequency signal (carrier).

Amplitude Carrier Modulation

Product of Signals...
Shift in Frequency Domain

FDM: Multiple Channels

Bandwidth of Link

Frequency versus Time-division Multiplexing

- With FDM different users use different parts of the frequency spectrum.
 - I.e. each user can send all the time at reduced rate
 - Example: roommates
- With TDM different users send at different times.
 - I.e. each user can sent at full speed some of the time
 - Example: a time-share condo
- The two solutions can be combined.
Today’s Lecture

- Modulation.
- Bandwidth limitations.
- Multiplexing.
- Media: Copper, Fiber, Optical, Wireless.

Copper Wire

- Unshielded twisted pair (UTP)
 - Two copper wires twisted - avoid antenna effect
 - Grouped into cables: multiple pairs with common sheath
 - Category 3 (voice grade) versus category 6
 - 100 Mbit/s up to 100 m, 1 Mbit/s up to a few km
 - Cost: ~ 10 cents/foot
- Coax cables.
 - One connector is placed inside the other connector
 - Holds the signal in place and keeps out noise
 - Gigabit up to a km
- Signaling processing research pushes the capabilities of a specific technology.
 - E.g. modems, use of cat 6

Light Transmission in Fiber

- Loss (dB/km)
- LED: 1.3μ, Lasers: 1.55μ
- Tens of THz

Ray Propagation

- Lower index of refraction
- Cladding
- Core

(note: minimum bend radius of a few cm)
Fiber Types

- Multimode fiber.
 - 62.5 or 50 micron core carries multiple “modes”
 - Used at 1.3 microns, usually LED source
 - Subject to mode dispersion: different propagation modes travel at different speeds
 - Typical limit: 1 Gbps at 100m

- Single mode
 - 8 micron core carries a single mode
 - Used at 1.3 or 1.55 microns, usually laser diode source
 - Typical limit: 10s of Gbps at 60 km or more
 - Still subject to chromatic dispersion

Gigabit Ethernet: Physical Layer Comparison (old chart)

<table>
<thead>
<tr>
<th>Medium</th>
<th>Transmit/receive</th>
<th>Distance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>1000BASE-CX</td>
<td>25 m</td>
<td>machine room use</td>
</tr>
<tr>
<td>Twisted pair</td>
<td>1000BASE-T</td>
<td>100 m</td>
<td>not yet defined; cost?</td>
</tr>
<tr>
<td>MM fiber 62 mm</td>
<td>1000BASE-SX</td>
<td>260 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000BASE-LX</td>
<td>500 m</td>
<td></td>
</tr>
<tr>
<td>MM fiber 50 mm</td>
<td>1000BASE-SX</td>
<td>525 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000BASE-LX</td>
<td>550 m</td>
<td></td>
</tr>
<tr>
<td>SM fiber</td>
<td>1000BASE-LX</td>
<td>5000 m</td>
<td></td>
</tr>
<tr>
<td>Twisted pair</td>
<td>100BASE-T</td>
<td>100 m</td>
<td>2p of UTP5/2-4p of UTP3</td>
</tr>
<tr>
<td>MM fiber</td>
<td>100BASE-SX</td>
<td>2000 m</td>
<td></td>
</tr>
</tbody>
</table>

Can we Increase Distance? Regeneration and Amplification

- At end of span, either regenerate electronically or amplify.
- Electronic repeaters are potentially slow, but can eliminate noise.
- Amplification over long distances made practical by erbium doped fiber amplifiers offering up to 40 dB gain, linear response over a broad spectrum. Ex: 40 Gbps at 500 km.
Wavelength Division Multiplexing

- Send multiple wavelengths through the same fiber.
- Multiplex and demultiplex the optical signal on the fiber
- Each wavelength represents an optical carrier that can carry a separate signal.
 - E.g., 16 colors of 2.4 Gbit/second
- Like radio, but optical and much faster

Things to Remember

- Bandwidth and distance of network links is limited by physical properties of media.
 - Attenuation, noise, dispersion, ...
- Network properties are determined by transmission medium and transmit/receive hardware.
 - Nyquist gives a rough idea of idealized throughput
- Can do much better with better encoding
 - Low b/w channels: Sophisticated encoding, multiple bits per wavelength.
 - High b/w channels: Simpler encoding (FM, PCM, etc.), many wavelengths per bit.
- Shannon: $C = B \times \log_2(1 + S/N)$
- Multiple users can be supported using space, time, or frequency division multiplexing.
- Properties of different transmission media.