Our “Narrow” Focus

Yes:
- Creating a “secure channel” for communication (Part I)
- Protecting network resources and limiting connectivity (Part II)
- “Network Security”

No:
- Preventing software vulnerabilities & malware, or “social engineering”.
- “Software Security”

Outline – Part II

- Security Vulnerabilities
 - Denial of Service
 - Worms
 - Countermeasures: Firewalls/IDS

Security Vulnerabilities

- Exist at every layer in the protocol stack!
 - Network-layer attacks
 - IP-level vulnerabilities
 - Routing attacks
 - Transport-layer attacks
 - TCP vulnerabilities
 - Application-layer attacks
IP-level vulnerabilities

• IP addresses are provided by the source
 • Spoofing attacks

• Using IP address for authentication
 • Should be rare today

• Some "features" that have been exploited
 • Fragmentation: resources on routers
 • Broadcast for traffic amplification: bandwidth, endpoints

Routing attacks

• Divert traffic to malicious nodes
 • Black-hole
 • Eavesdropping

• How to implement routing attacks?
 • Distance-Vector: Announce low-cost routes
 • Link-state: Dropping links from topology

• BGP vulnerabilities
 • Prefix-hijacking
 • Path alteration

TCP-level attacks

• SYN-Floods
 • Implementations create state at servers before connection is fully established

• Session hijack
 • Pretend to be a trusted host
 • Sequence number guessing

• Session resets
 • Close a legitimate connection

TCP SYN Flooding

• Exploit state allocated at server after initial SYN packet
• Send a SYN and don’t reply with ACK
• Server will wait for 511 seconds for ACK
 • Finite queue size for incomplete connections (1024)
• Once the queue is full it does not accept requests
• The solution is to use SYN cookies
 • The server keeps no state after the SYN
 • Instead, it embeds all the necessary state in the packet as carefully crafted initial sequence number
Where do the problems come from?

- Protocol-level vulnerabilities
 - Implicit trust assumptions in design
 - Many protocols were designed at a time that security was not a concern

- Implementation vulnerabilities
 - Both on routers and end-hosts

- Incomplete specifications
 - Often left to the imagination of programmers

Outline – Part II

- Security Vulnerabilities
 - **Denial of Service**
 - Worms
 - Countermeasures: Firewalls/IDS

Denial of Service

- Make a service unusable/unavailable

- Disrupt service by taking down hosts
 - E.g., ping-of-death

- Consume server-level resources
 - E.g., SYN-floods

- Consume network resources
 - E.g., UDP/ICMP floods

Reflector Attack

Unsolicited traffic at victim from legitimate hosts
Distributed DoS

- Handlers are usually high volume servers
 - Easy to hide the attack packets
- Agents are usually home users with DSL/Cable
 - Already infected and the agent installed
- Very difficult to track down the attacker
 - Multiple levels of indirection!
- Aside: How to distinguish DDos from flash crowd?

Outline – Part II

- Security, Vulnerabilities
- Denial of Service
- Worms
 - Countermeasures: Firewalls/IDS

Worm Overview

- Self-propagate through network
- Typical Steps in worm propagation
 - Probe host for vulnerable software
 - Exploit the vulnerability (e.g., buffer overflow)
 - Attacker gains privileges of the vulnerable program
 - Launch copy on compromised host
- Spread at exponential rate
 - 10M hosts in < 5 minutes
 - Hard to deal with manual intervention
Scanning Techniques

- Random: generate random addresses
- Local subnet: generate last 1, 2, or 3 bytes of IP address randomly
- Routing Worm: uses information about allocated addresses from BGP
- Hitlist: provide list of vulnerable hosts
- Topological: exploit information on the infected hosts

Random Scanning

- 32-bit randomly generated IP address
 - E.g., Slammer and Code Red I
 - What about IPv6?

- Hits black-holed IP space occasionally
 - Some percentage of IP space reserved
 - Detect worms by monitoring unused addresses
 - Honeypots/Honeynet

Some proposals for countermeasures

- Better software safeguards
 - Static analysis and array bounds checking (lint/e-fence)
 - Safe versions of library calls
 - gets(buf) → fgets(buf, size, ...)
 - sprintf(buf, ...) → snprintf(buf, size, ...)
- Host-diversity
 - Avoid same exploit on multiple machines
- Host-level solutions
 - E.g., Memory randomization, Stack guard
- Rate-limiting: Contain the rate of spread
- Content-based filtering: signatures in packet payloads

Outline – Part II

- Security, Vulnerabilities
- Denial of Service
- Worms
 - Countermeasures: Firewalls/IDS
Countermeasure Overview

- High level basic approaches
 - Prevention
 - Detection
 - Resilience
- Requirements
 - Security: soundness / completeness
 - Manage false positive / negative tradeoff
 - Overhead
 - Usability
- Where to place functionality: edge vs core

Firewall Motivation

- Block/filter/modify traffic at the perimeter of the network
 - Limit access to the network and all hosts/devices
- Why network-level?
 - Vulnerabilities on many hosts in network
 - Hosts/devices are very heterogeneous
 - Users do not keep systems up to date
 - Lots of patches to keep track of
 - Zero-day exploits

Firewalls Design

- Firewall inspects traffic that flows through it
- Allows traffic specified in the policy
- Drops everything else (“default off”)
- Two Types
 - Packet Filters, Proxies

Packet Filters

- Selectively passes packets from one network interface to another
 - Options: forward, drop, or forward + log
- Usually done within a router between external and internal network
- What/How to filter?
 - Packet Header Fields:
 - IP source and destination addresses
 - Application port numbers
 - ICMP message types/ Protocol options etc.
 - Packet contents (payloads)
Some examples

- Block all packets from outside except for SMTP servers
- Block all traffic to/from a list of domains
- Ingress filtering
 - Drop pkt from outside with addresses inside the network
- Egress filtering
 - Drop pkt from inside with addresses outside the network

Typical Firewall Configuration

- Internal hosts can access “Demilitarized Zone” (DMZ) and Internet
- External hosts can access DMZ only, not Intranet
- DMZ hosts can access Internet only
- Advantages?
 - A compromised service in DMZ it cannot affect internal hosts

Packet Filter Implementation

- Stateless packet filtering firewall
- Rule \(\rightarrow\) (Condition, Action)
- Rules are processed in top-down order
 - If a condition satisfied – action is taken

Sample Firewall Rule

Allow SSH from external hosts to internal hosts

Two rules
- Inbound and outbound
- How to know a packet is for SSH?
 - Inbound: src-port=1023, dst-port=22
 - Outbound: src-port=22, dst-port=1023
 - Protocol=TCP

Problems?

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Src Addr</th>
<th>Src Port</th>
<th>Dst Addr</th>
<th>Dst Port</th>
<th>Proto</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH-1</td>
<td>In</td>
<td>Ext</td>
<td>> 1023</td>
<td>Int</td>
<td>22</td>
<td>TCP</td>
<td>Allow</td>
</tr>
<tr>
<td>SSH-2</td>
<td>Out</td>
<td>Int</td>
<td>22</td>
<td>Ext</td>
<td>> 1023</td>
<td>TCP</td>
<td>Allow</td>
</tr>
</tbody>
</table>
Default Firewall Rules

- Default rules are placed at end of the list – after “Allow” rules
- Egress Filtering
 - Outbound traffic from external address → Drop
 - Benefits?
- Ingress Filtering
 - Inbound traffic from internal address → Drop
 - Benefits?
- Default Deny
 - Why?

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Src Addr</th>
<th>Src Port</th>
<th>Dst Addr</th>
<th>Dst Port</th>
<th>Proto</th>
<th>Ack Set?</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress</td>
<td>Out</td>
<td>Ext</td>
<td>Any</td>
<td>Ext</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
<tr>
<td>Ingress</td>
<td>In</td>
<td>Int</td>
<td>Any</td>
<td>Int</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
<tr>
<td>Default</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Discussion

- Advantages
 - Transparent to application/user
 - Simple packet filters can be efficient
- Disadvantages
 - Very hard to configure the rules – order matters, history
 - May only have coarse-grained information?
 - Does port 22 always mean SSH?
 - Who is the user accessing the SSH?
- Can make the firewall stateful
 - Keep the connection state - easier to specify rules
 - Can result in state explosion; does not work for UDP

Intrusion Detection Systems

- Traffic to the legitimate hosts/services can have attacks
- Intrusion detection system monitors traffic and traffic patterns
 - Looks for unusual behavior
 - Compares with known attacks, e.g., list of signatures based on attacks observed elsewhere
 - Block or report attacks

Summary – Part II

- Security vulnerabilities are real!
 - Protocol or implementation or bad specs
 - Poor programming practices
 - At all layers in protocol stack
- DoS/DDoS
 - Resource utilization attacks
- Worm/Malware
 - Exploit vulnerable services
 - Exponential spread
- Countermeasures: Firewall/IDS