Outline

- The IP protocol
 - IPv4
 - IPv6
- IP in practice
 - Network address translation
 - Address resolution protocol
 - Tunnels

IP Service Model

- Low-level communication model provided by Internet
- Datagram
 - Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
 - Analogous to letter or telegram

IPv4 Header Fields

- Version: IP Version
 - 4 for IPv4
- HLen: Header Length
 - 32-bit words (typically 5)
- TOS: Type of Service
 - Priority information
- Length: Packet Length
 - Bytes (including header)
- Header format can change with versions
 - First byte identifies version
- Length field limits packets to 65,535 bytes
 - In practice, break into much smaller packets for network performance considerations
IPv4 Header Fields

- Identifier, flags, fragment offset → used for fragmentation
- Time to live
 - Must be decremented at each router
 - Packets with TTL=0 are thrown away
 - Ensure packets exit the network
- Protocol
 - Demultiplexing to higher layer protocols
 - TCP = 6, ICMP = 1, UDP = 17...
- Header checksum
 - Ensures some degree of header integrity
 - Relatively weak – 16 bit
- Source and destination IP addresses
- Options
 - E.g. Source routing, record route, etc.
 - Performance issues
 - Poorly supported

IP Delivery Model

- **Best effort service**
 - Network will do its best to get packet to destination
- **Does NOT guarantee:**
 - Any maximum latency or even ultimate success
 - Informing the sender if packet does not make it
 - Delivery of packets in same order as they were sent
 - Just one copy of packet will arrive
- **Implications**
 - Scales very well (really, it does)
 - Higher level protocols must make up for shortcomings
 - Reliably delivering ordered sequence of bytes → TCP
 - Some services not feasible (or hard)
 - Latency or bandwidth guarantees

IP Fragmentation

- Every network has own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 - E.g., Ethernet is 1500 bytes
 - Don’t know MTUs of all intermediate networks in advance
- IP Solution
 - When hit network with small MTU, router fragments packet
 - Destination host reassembles the paper – why?

Fragmentation Related Fields

- **Length**
 - Length of IP fragment
- **Identification**
 - To match up with other fragments
- **Flags**
 - Don’t fragment flag
 - More fragments flag
- **Fragment offset**
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)
IP Fragmentation Example #1

host

```
MTU = 4000
```

router

```
Length = 3820, M=0
```

IP Fragmentation Example #2

router

```
MTU = 2000
```

```
Length = 3820, M=0
```

```
Length = 2000, M=1, Offset = 0
```

```
Length = 1840, M=0, Offset = 1980
```

```
3800 bytes
```

```
1980 bytes
```

```
1820 bytes
```

Fragmentation is Harmful

- Uses resources poorly
 - Forwarding costs per packet
 - Best if we can send large chunks of data
 - Worst case: packet just bigger than MTU
- Poor end-to-end performance
 - Loss of a fragment
- Path MTU discovery protocol → determines minimum MTU along route
 - Uses ICMP error messages
- Common theme in system design
 - Assure correctness by implementing complete protocol
 - Optimize common cases to avoid full complexity

Internet Control Message Protocol (ICMP)

- Short messages used to send error & other control information
- Some functions supported by ICMP:
 - Ping request/response: check whether remote host reachable
 - Destination unreachable: Indicates how packet got & why couldn’t go further
 - Flow control: Slow down packet transmit rate
 - Redirect: Suggest alternate routing path for future messages
 - Router solicitation / advertisement: Helps newly connected host discover local router
 - Timeout: Packet exceeded maximum hop limit
- How useful are they functions today?
IP MTU Discovery with ICMP

- Typically send series of packets from one host to another
- Typically, all will follow same route
 - Routes remain stable for minutes at a time
- Makes sense to determine path MTU before sending real packets
- Operation: Send max-sized packet with “do not fragment” flag set
 - If encounters problem, ICMP message will be returned
 - “Destination unreachable: Fragmentation needed”
 - Usually indicates MTU problem encountered
- ICMP abuse? Other solutions?

When successful, no reply at IP level
 - “No news is good news”
 - Higher level protocol might have some form of acknowledgement
Important Concepts

- Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
- ICMP provides low-level error reporting

- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing → hierarchical, CIDR
- IP service → best effort, simplicity of routers
- IP packets → header fields, fragmentation, ICMP

Outline

- The IP protocol
 - IPv4
 - IPv6

- IP in practice
 - Network address translation
 - Address resolution protocol
 - Tunnels

IPv6

- “Next generation” IP.
- Most urgent issue: increasing address space.
 - 128 bit addresses
- Simplified header for faster processing:
 - No checksum (why not?)
 - No fragmentation (really?)
- Support for guaranteed services: priority and flow id
- Options handled as “next header”
 - reduces overhead of handling options

IPv6 Address Size Discussion

- Do we need more addresses? Probably, long term
 - Big panic in 90s: “We’re running out of addresses!”
- 128 bit addresses provide space for structure (good!)
 - Hierarchical addressing is much easier
 - Assign an entire 48-bit sized chunk per LAN – use Ethernet addresses
 - Different chunks for geographical addressing, the IPv4 address space,
 - Perhaps help clean up the routing tables - just use one huge chunk per ISP and one huge chunk per customer.
IP Router Implementation: Fast Path versus Slow Path

- Common case: Switched in silicon (“fast path”)
 - Almost everything
- Weird cases: Handed to CPU (“slow path”, or “process switched”)
 - Fragmentation
 - TTL expiration (traceroute)
 - IP option handling
- Slow path is evil in today’s environment
 - “Christmas Tree” attack sets weird IP options, bits, and overloads router
 - Developers cannot (really) use things on the slow path
 - Slows down their traffic – not good for business
 - If it became popular, they are in trouble!

IPv6 Header Cleanup: Options

- 32 IPv4 options → variable length header
 - Rarely used
 - No development / many hosts/routers do not support
 - Worse than useless: Packets w/options often even get dropped!
 - Processed in “slow path”.
- IPv6 options: “Next header” pointer
 - Combines “protocol” and “options” handling
 - Next header: “TCP”, “UDP”, etc.
 - Extensions header: Chained together
 - Makes it easy to implement host-based options
 - One value “hop-by-hop” examined by intermediate routers
 - E.g., “source route” implemented only at intermediate hops

IPv6 Header Cleanup: “no”

- No checksum
 - Motivation was efficiency: If packet corrupted at hop 1, don’t waste b/w transmitting on hops 2..N.
 - Useful when corruption frequent, b/w expensive
 - Today: corruption is rare, bandwidth is cheap
- No fragmentation
 - Router discard packets, send ICMP “Packet Too Big” → host does MTU discovery and fragments
 - Reduced packet processing and network complexity.
 - Increased MTU a boon to application writers
 - Hosts can still fragment - using fragmentation header. Routers don’t deal with it any more.

Migration from IPv4 to IPv6

- Interoperability with IP v4 is necessary for incremental deployment.
 - No “flag day”
- Fundamentally hard because a (single) IP protocol is critical to achieving global connectivity across the internet
- Process uses a combination of mechanisms:
 - Dual stack operation: IP v6 nodes support both address types
 - Tunnel IP v6 packets through IP v4 clouds
 - IPv4-IPv6 translation at edge of network
 - NAT must not only translate addresses but also translate between IPv4 and IPv6 protocols
 - IPv6 addresses based on IPv4 – no benefit!
- 20 years later, this is still a major challenge!