Outline

- IP design goals
- Traditional IP addressing
 - Addressing approaches
 - Class-based addressing
 - Subnetting
 - CIDR
- IP protocol and friends
- Routing

Logical Structure of an Internet

- Interconnection of separately managed networks using routers
 - Topology has emerged over time – not designed
 - Individual networks can use different (layer 1-2) technologies
 - The public Internet is a special (highly successful) example
 - Send packets from source to destination by hopping through networks
 - "Network" layer responsibility

Internet Protocol (IP)

- Inter-network connectivity provided by the Internet protocol
- Implemented on routers: forward IP packets between networks
- IP creates abstraction layer that hides underlying technology from network application software
 - Allows range of current & future technologies
 - WiFi, traditional and switched Ethernet, personal area networks, ...
- But is a router not just a switch?
Frame Forwarding

- Bridge/switch has a table that shows for each MAC Address which port to use for forwarding.
- For every packet, the bridge "looks up" the entry for the packets destination MAC address and forwards the packet on that port.
- Other packets are broadcast – why?
- Timer is used to flush old entries

Why is this not a good solution for the Internet?

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:01:02:03:04:05</td>
<td>1</td>
</tr>
<tr>
<td>00:01:02:03:04:05</td>
<td>2</td>
</tr>
<tr>
<td>00:01:02:03:04:05</td>
<td>3</td>
</tr>
<tr>
<td>00:01:02:03:04:05</td>
<td>4</td>
</tr>
</tbody>
</table>

What are the Goals?

- LANs: “Connect hosts” → switching:
 - “Wire” abstraction: behaves like Ethernet
 - Only has to scale up a “LAN size”
 - Availability
- Internet: “Connect networks” → routing:
 - Scalability
 - Manageability of individual networks
 - Availability
 - Affects addressing, protocols, routing

Outline

- IP design goals
- Traditional IP addressing
 - Addressing approaches
 - Class-based addressing
 - Subnetting
 - CIDR
- IP protocol and friends
- Routing

Getting to a Network Destination

- How do you get driving directions?
- Intersections → routers
- Roads → links/networks
- Roads change slowly
Forwarding Packets

- (Table of virtual circuits ids)
 - More on this later
- Table of global destination addresses (IP)
 - Routers keep next hop for destination
 - Packets carry destination address
- Source routing - no forwarding table!
 - Packet carries a path

Source Routing

- List entire path in packet
 - Driving directions (north 3 hops, east, etc..)
- Router processing
 - Strip first step from packet
 - Examine next step in directions and forward
- Rarely used
 - End points need to know a lot about network
 - Economic and security concerns
 - Variable header size

Global Address Example

Forwarding based on Global Addresses

- Advantages
 - Conceptually simple
 - Lines up with roles of actors (ISPs, endpoints)
 - Stateless (soft state) – simple error recovery
- Disadvantages - challenges
 - Every switch knows about every destination
 - Potentially large tables – today’s topic
 - All packets to destination take same route
 - Potentially inefficient - “Traffic engineering” lecture
 - Need routing protocol to fill table
 - Next couple of lectures
Addressing in IP

- IP addresses identify interfaces
 - E.g., 128.2.1.1
 - Multiple interfaces -> multiple IP addresses
- Domain Name System (DNS) names are names of hosts
 - E.g., www.cmu.edu
- DNS binds host names to interfaces
 - More on DNS later in the course
- Routing binds interface addresses to paths

Addressing Considerations

- Flat addresses – one address for every host
 - Peter Steenkiste: 123-45-6789
 - Does not scale – router table size explodes
 - 630M (1/09) entries, doubling every 2.5 years
 - Why does it work for Ethernet?
- Hierarchical – add structure
 - Pennsylvania / Pittsburgh / Oakland / CMU / Steenkiste or Peter Steenkiste: (412)268-0000
 - Common “trick” to simplify forwarding, reduce forwarding table
- What type of Hierarchy?
 - How many levels?
 - Same hierarchy depth for everyone?
 - Who controls the hierarchy?

IP Address Structure

Challenge: Accommodate networks of different very sizes
Initially: classful structure (1981) (not relevant now!!!)

<table>
<thead>
<tr>
<th>Class</th>
<th>Network ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>0-32</td>
<td>8-24</td>
</tr>
<tr>
<td>Class B</td>
<td>10-15</td>
<td>0-24</td>
</tr>
<tr>
<td>Class C</td>
<td>110-111</td>
<td>0-24</td>
</tr>
<tr>
<td>Class D</td>
<td>1110-1111</td>
<td>0-24</td>
</tr>
<tr>
<td>Class E</td>
<td>1111</td>
<td>Reserved for experiments</td>
</tr>
</tbody>
</table>

Original IP Route Lookup

- Address specifies prefix for forwarding table
- Extract address type and network ID
- Forwarding table contains
 - List of class+network entries
 - A few fixed prefix lengths (8/16/24)
 - Prefix – part of address that really matters for routing
- www.cmu.edu address 128.2.11.43
 - Class B address – class + network is 128.2
 - Lookup 128.2 in forwarding table for class B
- Tables are still large!
 - 2 Million class C networks
Subnet Addressing
RFC917 (1984)

- Some “LANs” are very big, class A & B networks
 - Large companies, universities, …
 - Internet became popular quickly
- Cannot manage this as a single LAN
 - Hard to manage, becomes inefficient
- Need simple way to partition large networks
 - Partition into multiple IP networks that share the same prefix – called a “subnet”, part of a network
- CMU case study in RFC
 - Chose not to adopt – concern that it would not be widely supported 😊

Subnetting

- Add another layer to hierarchy
- Variable length subnet masks
 - Could subnet a class B into several chunks
- Subnetting is done internally in the organization
 - It is not visible outside – important for management

Subnetting Example

- Assume an organization was assigned address 150.100
- Assume < 100 hosts per subnet
- How many host bits do we need?
 - Seven
- What is the network mask?
 - 11111111 11111111 11111111 10000000
 - 255.255.255.128

Forwarding Example

- Assume a packet arrives with address 150.100.12.176
- Step 1: AND address with class + subnet mask
 - Subnet masks stored on router
Outline

- IP design goals
- Traditional IP addressing
 - Addressing approaches
 - Class-based addressing
 - Subnetting
 - CIDR
- IP protocol and friends
- Routing

IP Address Problem (1991)

- Address space depletion
 - Suppose you need $2^{16} + 1$ addresses?
 - Class A too big for all but a few domains
 - Class C too small for many domains but they don’t need a class B address
 - Class B address pool allocated at high rate
 - Many allocated address block are sparsely used
- Developed a strategy based on a three solutions
 - Switch to a “classless” addressing model
 - Network address translation
 - Definition of IPv6 with larger IP addresses

Classless Inter-Domain Routing (CIDR) – RFC1338

- Arbitrary split between network & host part of address → more efficient use of address space
 - Do not use classes to determine network ID
 - Use “prefix” that is propagated by routing protocol
 - E.g., addresses 192.4.16 - 192.4.31 have the first 20 bits in common. Thus, we use these 20 bits as the prefix (network number) → 192.4.16/20
 - Merge forwarding entries → smaller tables
 - Use single entry for range in forwarding tables even if they belong to different destination networks
 - “Adjacent” in address space and same egress

CIDR Example

- Network is allocated 8 class C chunks, 200.10.0.0 to 200.10.7.255
 - Move 3 bits of class C address to host address
 - Network address is 21 bits: 201.10.0.0/21
 - Replaces 8 class C routing entries with 1 entry
 - But how do routers know size of network address?
 - Routing protocols must carry prefix length with address
 - 8 times
 - 3 bits
IP Addresses: How to Get One?

Network (network portion):
- Get allocated portion of ISP’s address space:

<table>
<thead>
<tr>
<th>ISP’s block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>....</td>
<td>...</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>

How does an ISP get block of addresses?
- From Regional Internet Registries (RIRs)
 - ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)

How about a single host?
- Assigned by sys admin (static or dynamic)
 - Host broadcasts “DHCP discover” msg
 - DHCP server responds with “DHCP offer” msg
 - Host requests IP address: “DHCP request” msg
 - DHCP server sends address: “DHCP ack” msg

IP Address Availability Remains a Major Challenge
- Some are in big trouble!
 - APNIC:
 - Asia
 - AFRINIC:
 - Africa
 - ARIN:
 - North America
 - LACNIC:
 - Latin America
 - RIPE NCC:
 - Europe, Middle East, parts of central Asia

CIDR Illustration

Provider is given 201.10.0.0/21
- 201.10.0.0/22
- 201.10.4.0/24
- 201.10.5.0/24
- 201.10.6.0/23
CIDR Implication: Longest Prefix Match

- How to deal with multi-homing, legacy addresses, ...

Host Routing Table Example

- From "netstat –rn"
- Host Dest 128.2.209.100 when plugged into CS ethernet
- Dest 128.2.209.100 routing to same machine
- Dest 128.2.0.0 other hosts on same ethernet
- Dest 127.0.0.0 special loopback address
- Dest 0.0.0.0 default route to rest of Internet
- Main CS router: gigrouter.net.cs.cmu.edu (128.2.254.36)

Routing to the Network

- Packet to 10.1.1.3 arrives
- Path is R2 – R1 – H1 – H2
- H1 serves as a router for the 10.1.1.2/31 network

Routing Within the Subnet

- Packet to 10.1.1.3
- Matches 10.1.0.0/23

Routing table at R2

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>-</td>
<td>lo0</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>provider</td>
<td>10.1.16.1</td>
</tr>
<tr>
<td>10.1.8/24</td>
<td>-</td>
<td>10.1.8.1</td>
</tr>
<tr>
<td>10.1.2/23</td>
<td>-</td>
<td>10.1.2.1</td>
</tr>
<tr>
<td>10.1.0.0/23</td>
<td>10.1.2.2</td>
<td>10.1.2.1</td>
</tr>
</tbody>
</table>

128.2.209.100 0.0.0.0 255.255.255.255 eth0
128.2.0.0 0.0.0.0 255.255.0.0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 lo
0.0.0.0 128.2.254.36 0.0.0.0 eth0
Routing Within the Subnet

- Packet to 10.1.1.3
- Matches 10.1.1.2/31
- Longest prefix match

Routing table at R1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>-</td>
<td>lo0</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.2.1</td>
<td>10.1.2.2</td>
</tr>
<tr>
<td>10.1.2.0/23</td>
<td>10.1.2.1</td>
<td>10.1.2.2</td>
</tr>
<tr>
<td>10.1.0.0/24</td>
<td>-</td>
<td>10.1.6.1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>-</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>10.1.1.2/31</td>
<td>10.1.1.4</td>
<td>10.1.1.1</td>
</tr>
</tbody>
</table>

Routing Within the Subnet

- Packet to 10.1.1.3
- Direct route
- Longest prefix match

Routing table at H1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>-</td>
<td>lo0</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.1.1</td>
<td>10.1.1.4</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>-</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>10.1.1.2/31</td>
<td>-</td>
<td>10.1.1.2</td>
</tr>
</tbody>
</table>

Important Concepts

- Hierarchical addressing critical for scalable system
 - Don’t require everyone to know everyone else
 - Reduces number of updates when something changes
- Classless inter-domain routing supports more efficient use of address space
 - Adds complexity to routing, forwarding, …
 - Not a problem today