Goal and Outline

- **Goal:** gain a basic understanding of how you can build a (small) packet switched network
 - Focus is to convince you that this is feasible
 - A bit more detail later in the course for Ethernet and WiFi

- Physical and Datalink functions
- Physical layer: Modulation
- Datalink
 - Medium access control
 - Scaling up

Today's Story

- Two nodes
- One wire
- Or more wires

An intranet

What Do We Need?

- Physical layer:
 - Modulation: send a stream of bits to a receiver using an electromagnetic signal
 - Coding: add redundancy for error detection, meet electrical constraints, ...

- Datalink layer:
 - Framing: identify packet boundaries and headers
 - Error control: error detection and correction
 - Media access control: arbitrating access to the “link”
 - Bridging, switching, ...: extending network size

- Described “by example”
Outline

- PHY and DL functions
- Modulation
- Datalink layer
 - Media access control
 - Scaling up

Transferring Information

- Information transfer is a physical process
 “The wireless telegraph is not difficult to understand. The ordinary telegraph is like a very long cat. You pull the tail in New York, and it meows in Los Angeles. The wireless is exactly the same, only without the cat.”
- In this class, we generally care about
 - Electrical signals (on a wire)
 - Optical signals (in a fiber)
 - RF signals (wireless)
 - More broadly: electromagnetic signals

What is Modulation?

- The sender changes a signal in a way that the receiver can recognize - conveys information
- Ways to modulate a signal (think: sinusoidal wave)
 - Change frequency, phase, or amplitude
 - Similar to AM/FM radio:
 - But we encode bits!
- Analogy from music:
 - Volume: Amplitude Modulation (AM)
 - Pitch: Frequency Modulation (FM)
 - Timing: Phase Modulation (PM)

Binary Modulation

- AM: change the strength of the signal
- FM: change frequency:
- PM: change phase
Looks Straightforward, but ...

- Bad things happen to the signal as it travels to receiver:
- Noise: “random” energy is added to the signal
- Attenuation: some of the signal’s energy leaks away
- Dispersion: signal is distorted due to frequency-dependent effects distorts the signal
- These effects get worse with distance and depend on the transmission medium

What is the impact of a Bad Signal?

- The receiver may no longer be able to determine what bits were sent, resulting in bit errors
 - Bit error rate increases with the bit rate
 - The result is that we need to limit the bit rate and the length of the links.
- For wired network, that standard specifies both
 - E.g., standards for 10 Mbs, 100 Mbs, .. Ethernet
 - For wireless networks many other factors impact the bit error rate – requires more complex solutions
 - Wait for wireless lectures

Sketch of Solution

- Solutions for optimizing bandwidth and recovering from errors fall in two classes:
 1. Retransmission by a higher layer protocol
 2. Coding: add redundancy to the bit stream so the receiver can recover from the errors (FEC)
- Can be used in any layer of the stack, but a common approach is:
 1. Retransmission in datalink or transport protocol
 2. FEC in PHY layer

Outline

- PHY and DL functions
- Modulation
- Datalink layer
 - Media access control
 - Scaling up
Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - Add header, mark and detect frame boundaries
- Flow control: avoid that sender outruns the receiver
- Error control: error detection and correction to deal with bit errors.
 - May also include other reliability support, e.g. retransmission
- Media access: controlling which frame should be sent next over a link.
- Bridging, switching: extend the size of the network

Datalink Architectures

- Switches connected by point-to-point links -- store-and-forward.
 - Used in WAN, LAN, and for home connections
 - Conceptually similar to “routing”
 - But at the datalink layer instead of the network layer
 - MAC = (local) scheduling
- Multiple access networks - contention based.
 - Multiple hosts are sharing the same transmission medium
 - Used in LANs and wireless
 - Access control is distributed and much more complex

Datalink Classification

- Switch-based
 - Virtual Circuits
 - ATM, framerelay
 - Packet Switching
 - Bridged LANs
- Multiple Access
 - Scheduled Access
 - Token ring, FDDI, 802.11
 - Random Access
 - Ethernet, 802.11, Aloha

Multiple Access: How to Share a Wire (or the wireless ether)

- Problem: how do you prevent nodes from “talking” at the same time – causes “collision”
- Two classes of solutions:
 - Explicit coordination: schedule transmissions sequentially
 - Randomly access medium: send and hope you get lucky
Scheduled Access MACs

- Reservation systems
 - Central controller
 - Distributed algorithm, e.g. using reservation bits in frame
- Polling: controller polls each node
- Token ring: token travels around ring and allows nodes to send one packet
 - Distributer version of polling
 - FDDI, ...

Random Access Protocols

- When a node has a packet to send
 - Transmit at full channel data rate R
 - No a priori coordination among nodes
- If you are lucky, receiver will receive packet, but ..
- Multiple simultaneous transmissions → “collision”
- Random access MAC protocol specifies:
 - How to avoid and/or detect collisions
 - How to recover from collisions (e.g., via retransmissions)
- Examples of random access MAC protocols:
 - Slotted ALOHA and ALOHA
 - CSMA/CD (~Ethernet) and CSMA/CA (~WiFi)

How Can We Avoid Collisions?

- Natural scheme – listen before you talk...
 - Works well in practice
 - A cheap form of coordination
- But sometimes this breaks down
 - When?
 - How do we fix/prevent this?

Collision Example

- B and D transmit before they can hear the other transmission
 - Unavoidable!
- Solution is to detect collisions:
 - B and D will hear the sum of the signals = garbage
 - They stop sending right away and retransmit
- Lots of details left out
 - E.g., backoff, packet and wire length, ..
Ethernet MAC Features

- **Carrier Sense:** listen before you talk
 - Avoid collision with an ongoing transmission
- **Advantage:** it is very efficient
 - No coordination overhead or transmission delay
- **But it does not always work:** simultaneous transmissions can happen
 - Speed of light is “only” 1 foot/nsec
- **Collision Detection during transmission**
 - Listen while transmitting
 - If you notice interference → assume collision
 - Abort transmission immediately and schedule a retransmission

Ethernet Frame Structure

- Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

 ![Ethernet Frame Structure Diagram]

- **Addresses** are 48 bit IEEE MAC addresses
 - Used by all IEEE 802 LAN standards, including WiFi
 - In practice used as a flat address – no structure

How Well Does Ethernet Work?

- The protocol is broken, right?
 - You would not design a traffic light this way!
- The protocol is very effective in practice
 - Most LANs are under-utilized
 - Scheduled access protocols have high overhead
- **Transmission is fairly reliable in practice**
 - Collisions can be detected reliably and corrupted packets are transmitted
 - No need for acknowledgements – low overhead!
 - Error rates due to random bit errors are very low in practice

Other Datalink Technologies

- **WiFi** is sometimes called “wireless Ethernet”
 - Same “listen before you talk” concepts
- **But the details are very different!**
 - Collision detection does not work, attenuation is much higher, bit error rates are much higher – life is rough
- **WAN** has used a variety of technologies
 - Early days: framerelay – based on virtual circuits
 - SONET: very widely over several generations of fiber
 - Supports both voice and data effectively
 - Today: Ethernet (of course)
Outline

- PHY and DL functions
- Modulation
- Datalink layer
 - Media access control
 - Scaling up
 - Number of nodes
 - Bit rate

Scaling Up the Number of Nodes

- What breaks when we keep adding people to the same wire?

Scaling Up the Ethernet Speed

- Technology improvements lead to higher bit rates: 10Mbps, 100Mbps, 1Gbps, 40 Gbps, ...
- Problem: carrier sense becomes completely ineffective
 - For example, for 40 Gps links
 → 0.3 microsec to send a maximum sized Ethernet frame
 → forget about carrier sense
- Solution: use a bridge or switch-based design
 - And call it Ethernet!

Scaling Up Solution

- Break up the network in smaller networks
- Smaller “collision domain” - fewer nodes per network
 - Also shorter wires
- Networks can transmit packet in parallel – more capacity
- Uses “bridges” (switches) to connect the networks
 - Bridges must forward the packets when needed
- Challenge: how do you know which packets to copy and where?
Frame Forwarding

- Bridge/switch has a table that shows for each MAC Address which port to use for forwarding.
- For every packet, the bridge “looks up” the entry for the packets destination MAC address and forwards the packet on that port.
 - Other packets are broadcast – why?
 - Timer is used to flush old entries.

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:54:32:0B:54:32</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>04:82:34:0B:54:32</td>
<td>2</td>
<td>01</td>
</tr>
<tr>
<td>07:12:34:0B:54:32</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>03:82:34:0B:54:32</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>05:54:32:0B:54:32</td>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

Switch Architecture

- Packets come in one interface, forwarded to output interface based on address.
 - Same idea for bridges, switches, routers: address look up differs.
- Control processor manages the switch and executes higher level protocols.
 - E.g. routing, management, ...
- The switch fabric directs the traffic to the right output port.
- The input and output ports deal with transmission and reception of packets.

Transparent Bridges

- Design goals:
 - Self-configuring without hardware or software changes
 - Bridge does not impact the operation of the individual LANs, i.e., a set of bridged LANs acts as a single LAN
- Three parts to making bridges transparent:
 1) Forwarding frames
 2) Learning addresses/host locations
 3) Spanning tree algorithm

Learning Bridges

- Manually filling in bridge tables?
 - Time consuming, error-prone
- Keep track of source address of packets arriving on every link, showing what segment hosts are on
 - Fill in the forwarding table based on this information
But Does it Scale?

- More complex topologies can provide redundancy.
 - Especially important in larger networks
 - But this creates a problem: loops!
 - Solution: spanning tree

Spanning Tree Protocol Overview

Embed a tree that provides a single unique path to each destination:
1) Elect a single bridge as a root bridge
2) Each bridge calculates the distance of the shortest path to the root bridge
3) Each LAN identifies a designated bridge, the bridge closest to the root. It will forward packets to the root.
4) Each bridge determines a root port, which will be used to send packets to the root
5) Identify the ports that form the spanning tree

Spanning Tree Algorithm Steps

- Root of the spanning tree is the bridge with the lowest identifier.
 - All ports are part of tree
 - Each bridge finds shortest path to the root.
 - Remembers port that is on the shortest path
 - Used to forward packets
 - Select for each LAN the designated bridge that has the shortest path to the root.
 - Identifier as tie-breaker
 - Responsible for that LAN

Spanning Tree Algorithm

- Each node sends configuration message to all neighbors.
 - Identifier of the sender
 - Id of the presumed root
 - Distance to the presumed root
 - E.g. B5 sends (B5, B5, 0)
- When B receive a message, it decide whether the solution is better than their local solution.
 - A root with a lower identifier?
 - Same root but lower distance?
 - Same root, distance but sender has lower identifier?
- After convergence, each bridge knows the root, distance to root, root port, and designated bridge for each LAN.
Spanning Tree Algorithm (part 2)

- Each bridge B can now select which of its ports make up the spanning tree:
 - B's root port
 - All ports for which B is the designated bridge on the LAN
- Bridges can not configure their ports.
- Forwarding state or blocked state, depending on whether the port is part of the spanning tree
- Root periodically sends configuration messages and bridges forward them over LANs they are responsible for.

Spanning Tree Algorithm Example

Node B2:
- Sends $(B2, B2, 0)$
- Receives $(B1, B1, 0)$ from B1
- Sends $(B2, B1, 1)$ "up"
- Continues the forwarding forever

Node B1:
- Will send notifications forever

Node B7:
- Sends $(B7, B7, 0)$
- Receives $(B1, B1, 0)$ from B1
- Sends $(B7, B1, 1)$ "up" and "right"
- Receives $(B5, B5, 0)$ - ignored
- Receives $(B5, B1, 1)$ - better
- Continues forwarding the B1 messages forever to the "right"

Ethernet Switches

- Bridges make it possible to increase LAN capacity.
- Packets are no longer broadcasted - they are only forwarded on selected links
- Adds a switching flavor to the broadcast LAN
- Ethernet switch is a special case of a bridge: each bridge port is connected to single host.
- Simplifies the protocol and hardware used (only two stations on the link) – no longer full CSMA/CD
- Can make the link full duplex (really simple protocol!)
- Can have different port speeds on the same switch

Ethernet Evolution

Early Implementations

- A Local Area Network
- MAC addressing, non-routable
- BUS or Logical Bus topology
- Collision Domain, CSMA/CD
- Bridges and Repeaters for distance/capacity extension
- 1-10Mbps: coax, twisted pair (10BaseT)

Current Implementations

- Switched solution
- Little use for collision domains
- 40% of traffic leaves the LAN
- Servers, routers 10 x station speed
- 10/100/1000 Mbps, 10gig coming: Copper, Fiber
- 80% of new LANs are Ethernet

Ethernet or 802.3

- WAN
- LAN
- Hub
- Switch
- Router
Typical Campus Topology

Capacity?
Reliability?