Today’s Lecture

• Administrivia

• Why are networks important?
 • What is a network?
 • What is the Internet
 • Internet design

• A whirlwind tour of the course
Teaching Staff

• Instructors:
 • Peter Steenkiste

• Teaching assistants:
 • Serhat Kiyak
 • Harshad Shirwadkar

• staff-441@cs.cmu.edu \(\rightarrow\) course staff
 • Please use this instead of emailing just one of us!
 • Office hours and contact information on the web site.

Course Goals

• Become familiar with the principles and practice of data networking
 • Routing, transport protocols, naming, ...
 • Design of networks and services

• Learn how to write applications that use the network
 • A web server
 • Optimizing application performance

• Get some understanding about network internals in a hands-on way
 • TCP-style reliable congestion control
Course Format

• ~28 lectures
 • Cover the “principles and practice”
 • Complete readings before lecture
• 4 homework assignments
 • “Paper”: Do you understand and can you apply the material?
 • “Lab”: Illustrate networking concepts
 • Teach networking concepts/tools
 • Preparation for midterm and final
• 3 programming projects
 • How to use and build networks / networked applications
 • Application-layer programming; include key ideas from kernel
 • Larger, open-ended group projects. Start early!
• Midterm and final
 • Emphasis on understanding of course material

Recitation Sections

• Key 441 objective: system programming - C
• Different from what you’ve done before!
 • Networks and services designed to run indefinitely
 • Must handle all errors! Must be secure
 • Interfaces specified by documented protocols
 • Concurrency involved (inter and intra-machine)
 • Must have good test methods
• Recitations address this
 • “A system hackers’ view of software engineering”
 • Help develop practical skills needed in the projects (and beyond)
Course has 3 Projects

- Web server: example of a widely used service accessed using a standard protocol
 - Implement GET, PUT, HTTPS, and cgi
- Bit torrent: exposure to network internals
 - Implement transport level functions
- Video streaming: end-to-end infrastructure for delivering high quality video
 - Uses load sensitive QoE optimization, content delivery networks, DNS redirect, ...

Project Logistics

- First project is solo – others are in teams of 2
- We will use piazza for communication
- You must use version control – git
 - We are flexible about where you keep the repository
- We use autolab for grading
 - But: Autolab is a terrible debugging tool
 - You will have to write your own test scripts
 - We will provide some example scripts but grading will use a more extensive set of tests
- See web page and course handouts for details
Sounds Great! How Do I Get In?

- We currently still have a waiting list
 - If you are not taking the course, please drop it ASAP
- 15-213/18-213/15-513 is a prerequisite
 - If you have not taken this course you will have to argue that you have an equivalent background
 - Please respond to my e-mail if you want to get in
- You can only enroll if you have enough credits!
 - If you are maxed out on courses, please drop one so we can move you
- Historically, all students who persist by attending class get into the course

Administrative Stuff

- Watch the course web page
 - Handouts, readings, ..
 - Always check here first

- Office hours posted on web page
 - Make an appointment if you have a conflict

- Course secretary
 - TBD – new admin starting later in September
 - Pick up graded assignments, …
Grading

- Roughly equal weight in projects and testing
 - 45% for Projects I, II and III
 - 18% for Midterm exam
 - 27% for Final exam
 - 10% for Homework
- You **MUST** demonstrate competence in both projects and tests to pass the course
 - Fail either and you fail the class!

Policy on Collaboration

- Working together is important
 - Discuss course material in general terms
 - Work together on program debugging, ..
 - Final submission must be your own work
 - Homeworks, midterm, final

- Projects: Solo (P1) + Teams of two (P2,P3)
 - Collaboration, group project skills
 - Both students should understand the entire project

- Web page has details, e.g., university policy, etc.

- Things we don't want to have to say: We run projects through cheat-checkers against all previously and concurrently handed in versions…
Late Work and Regrading

- Late work will receive a 15% penalty/day
 - No assignment can be more than 2 days late
 - Only exceptions are documented illness and family emergencies

- Requests for regrading must be submitted in writing to course secretary within 2 weeks.
 - Do not contact us by e-mail
 - Office hours are fine for discussion but not for regrading
 - Regrading of assignment will be done by original grader

- No assignments with a “short fuse”
 - Homeworks: ~1-2 weeks - Projects: ~4 weeks
 - Start on time!
 - Every year some students discover that a 4 week project cannot be completed in a week

The Slides

- The slides are a resource that is shared by the many instructors of 15-441
 - Also some sharing with 18-345

- They include contributions from Peter Steenkiste, Srini Seshan, Dave Andersen, Hui Zhang, Eric Anderson, and others
Today’s Lecture

- Administrivia

- Why are networks important?
 - What is a network?
 - What is the Internet
 - Internet design

- A whirlwind tour of the course

What is a Network?

- An infrastructure that allows (distributed) “users” to communicate with each other
 - People, devices, …
 - By means of voice, video, text, …
 - We focus on electrical/optical/RF/.. (not trucks)
- It is assumed that the infrastructure is shared by many users
 - Point to point link is not very interesting
 - Value increases with the number of users!
Basic Building Block: Links

- Simplest example: 2 nodes
 - Sender changes voltage, frequency, …
 - Or maybe it is optical or wireless?
- But receiver must “understand” sender – protocols
 - More on this later
- Okay… what about more nodes?
- How about a million?

Scaling the Network

(N^2) Wires for everybody!

Or one wire

Or how about …
Telegraphs & Long-Distance Message Communications

- Courier: physical transport of the message
 - Messenger pigeons, pony express, FedEx
- Telegraph: message is transmitted across a network using signals – much faster!
 - Drums, beacons, mirrors, smoke, flags.
 - Light, electricity

Electric Telegraph Networks

- Electric telegraph networks exploded
 - Message switching & Store-and-Forward operation
 - Key elements: Addressing, Routing, Forwarding
- Optical telegraph networks disappeared
Bell’s Telephone

- Alexander Graham Bell (1875) working on harmonic telegraph to multiplex telegraph signals
- Discovered voice signals can be transmitted directly
 - Microphone converts voice pressure variation (sound) into analog electrical signal
 - Loudspeaker converts electrical signal back into sound
- Telephone patent granted in 1876
- Bell Telephone Company founded in 1877

Signal for “ae” as in cat

Links and Switches in Early Telephone Networks
Three Phases of a Connection

1. Pick up phone
2. Dial tone.
3. Dial number
4. Network selects route; Sets up connection; Called party alerted
5. Exchange voice signals
6. Hang up.

Circuit Switching

- Source first establishes a connection (circuit) to the destination
 - Each switch along the way stores info about connection (and possibly allocates resources)
- Source sends the data over the circuit
 - No need to include the destination address with the data since the switches know the path
- The connection is explicitly torn down
- Example: telephone network (analog)
Circuit Switching Discussion

• Circuits have some very attractive properties.
 • Fast and simple data transfer, once the circuit has been established
 • Predictable performance since the circuit provides isolation from other users
 • E.g. guaranteed bandwidth

• But it also has some shortcomings.
 • How about bursty traffic
 • Do you need a permanent circuit to Facebook?
 • Circuit will be idle for significant periods of time
 • How about users with different bandwidth needs

Contrast this with Packet Switching (our emphasis)

• Source sends information as self-contained messages that have an address.
 • Source may have to break up single message in multiple packets

• Each packet travels independently to the destination host.
 • Switches use the address in the packet to determine how to forward the packets
 • Store and forward

• Analogy: a letter in surface mail.
And Some More Examples …

- Television network
 - Over the air
 - Cable TV
 - Satellite
- Radio broadcast
- Various private networks
 - E.g., for first responders, military, ..

Today’s Lecture

- Administrivia

- Why are networks important?
 - What is a network?
 - What is the Internet
 - Internet design

- A whirlwind tour of the course
What about the Internet

• An inter-net: a network of networks.
 • Networks are connected using routers and other devices, e.g., for security, accounting, …
 • Networks can use diverse technologies
 • Typically managed by different organizations

• The Internet: the interconnected set of networks of the Internet Service Providers (ISPs)
 • About ~23,000 “transit” ISPs make up the Internet
 • Many more “edge” networks

What is the Objective of the Internet?

• Enable communication between diverse applications on diverse devices (“computers”)
 • Web, peer-to-peer, video streaming, distributed processing, video and audio conferencing, …
 • Over very diverse infrastructures
 • The “Internet”, WiFi and cellular, data center networks, corporate networks, dedicated private networks, …

• In contrast: previous networks were special purpose and fairly homogeneous in terms of technology

• Must understand application needs/demands (Thursday)
 • Traffic data rate and loss sensitivity
 • Traffic pattern (bursty or constant bit rate)
 • Traffic target (multipoint or single destination, mobile or fixed)
Packet Switching – Statistical Multiplexing

- Switches arbitrate between inputs
- Can send from any input that’s ready
 - Links are never idle when there is traffic to send
 - (Efficiency!)

Multiplexing

- Need to share network resources

- How? Switched network
 - Party “A” gets resources sometimes
 - Party “B” gets them sometimes
 - Interior nodes act as “Switches”

- Many challenges: fairness, efficiency, …
Internet Design

- In order to inter-operate, all participating networks must follow a common set of rules
- Example: requirements for packets:
 - Address format, header information, packet size limit, ...
- But also: routing, error reporting, billing, …
- Also: what is the “service model”, i.e., the commitment made to applications
 - Internet: *best-effort* – packets can get lost, etc.
 - But some applications need reliable data delivery, a minimal bandwidth guarantee, low latency, …

Networks Juggle Many Goals

- Support rich set of applications
- Efficiency – resource use; cost
- The “ilities”:
 - Evolvability
 - Managability
 - Security (securability, if you must)
- Ease of:
 - Deployment
 - Management
 - Creating useful applications
- Scalability
Must also Deal with “Real World”

• Economics and public policy play a big role in the design of the Internet
 • ISPs are competing for customers but they must also work together
 • They must make money – no ISPs, no Internet
• Public policy looks after user interests and tries to promote competition and innovation
• Users will only use the network if they get value out of it
 • Concerns such as privacy can stifle use

Today’s Lecture

• Administrivia

• Why are networks important?
 • What is a network?
 • What is the Internet
 • Internet design

• A whirlwind tour of the course
Whirlwind Tour of the Course

- Infrastructure: hardware (or close to it)
- Core networking protocols: IP, dealing with errors and congestion, routing, …
- Optimizing performance: QoS techniques, caching, CDNs, peer-peer, …
- Making it work well: security, management, …
- IP everywhere: the Internet, last mile, wireless, mobility, data center, video, IP-TV, skype, …
- Focus is on today’s Internet but also trends
 - What will the Internet look like in 10, 20, 30 years?

Infrastructure

- Why do we have different types of “wires”?
 - And why do I care?
- Ethernet is very old, so why is it so fast?
 - Can’t they find something better?
- What are the limits of some of the technologies?
 - Both physical and protocol limits
Core Networking Protocols

Think: traffic on the roads
• How do I find a path to my destination
• How do I specify addresses
• What if my car breaks down?
• How do I deal with traffic jams
• …

Optimizing Performance

• Intuitively: lots of bandwidth!
• But there is more to it:
 • Latency is often more critical!
 • For voice and video – can I offer guarantees?
 • Can I beat the speed of light?
 • Hint: this can make you rich
 • Why did we use peer to peer networks?
 • And why did they (mostly) go away?
Making the Network Work Well

- Good technology is only a small part of the puzzle – deployment and management issues are equally (or more) critical
 - Involves many people, high cost, big impact on QoE
- How do I secure my network?
 - Lots of bad guys: DOS, compromised hosts, privacy leaks, botnets, …
- How do I manage resources, reduce operator errors, deal with failures, …
 - And how does it differ in LAN, WAN, wireless, …

IP Everywhere

- Using IP technology has become attractive
 - Cheap commodity hardware, lots of tools, people trained in the technology, end-to-end support, …
- The (public) Internet: our focus
 - How do you optimize “the web”: CDNs, caching, …
- Data centers: very special requirements
 - Map-reduce, 3-tier business apps, load balancing, …
- IP TV, voice/video conferencing:
 - Very high QoE expectations
- Wireless and mobile apps
 - For many users, primary way of accessing Internet
- Residential networking
• I have to travel next week, so:
 • Three lectures this week
 • Recitations next week
• Upcoming lectures:
 • Applications requirements and protocol stack
 • Physical layer technologies
 • Datalink: ethernet and friends