
HTTP Parsing
pallabi ghosh (PALLABIG@ANDREW.cmu.edu)

15-441 Computer Networks

Recitation 3

 Feedback for
Checkpoint 1

15-441: Computer
Networks

3

Basic code structure
 bind(), listen()
 while true select(r_fds,w_fds)

for fd in all current fds
if fd is ready to accpet

accpet() → new_fd
if fd is ready to read

recv() → buffer[fd]
if fd is ready to write && buffer[fd]

buffer[fd] → send()

4

Timeout error: why is it slow?
 bind(), listen(s, 5?)
 while true select(r_fds,w_fds_with_data)

for fd in all current fds
if fd is ready to accpet

accpet() → new_fd
if fd is ready to read

recv() → buffer[fd]
if fd is ready to write && buffer[fd]

buffer[fd] → send()

5

About Makefile
•At least have make and make clean working
•make: Nothing to be done for 'all'?

•all: lisod
•lisod:
@gcc echo_server.c -o lisod -Wall -Werror

•clean: rm -f lisod
–Added .PHONY lisod at the beginning

6

About code style
•Use meaningful comment for git commit
•And in your source code of course
•No magic number in your code
•Do not version-control your *.o or lisod
•Do not print debug info
Your submission should be camera-ready

7

PJ 2 CP 2
•GET, POST and HEAD requests
•Read the documents first to understand the rules.
•RFC 2616
•Check the annotated RFC

8

HTTP request
•Request =

Request-Line ;
*((general-header ;
request-header ;

 entity-header) CRLF) ;
CRLF [message-body] ;

9

HTTP request
•Request =
GET /path/file.html HTTP/1.1
Host: www.host1.com:80
User-Agent: MyBrowser/1.0
[blank line here]

10

HTTP request
•Request =
POST /path/script.cgi HTTP/1.1
Host: www.host1.com:80
User-Agent: MyBrowser/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 32

name=mukerjee&age=25

11

HTTP response
•Response =

Status-Line ;
*((general-header ;
 response-header ;
entity-header) CRLF) ;
 CRLF [message-body] ;

12

HTTP response
•Response =
HTTP/1.1 200 OK
Date: Fri, 20 Sep 2013 23:59:59 GMT
Content-Type: text/html
Content-Length: 1354

<html>
...

13

Tools
•Use tools to look at these requests and see the pattern for real
–Wireshark
◦http://www.wireshark.org/
–Use the dumper code (dumper.py)
–Play with the headers
◦Tamperdata
◦Poster
–Online tools
◦http://web-sniffer.net/

Sample GET request

 GET request was done on this page.
 Do you see the pattern?

Sample POST request

 POST method called while submitting this form.
 Can you identify the values that were submitted?

HEAD is similar to GET!
(just without the data)

Sample GET response

Sample POST response

 For this checkpoint you just have to send status code.
More on dynamic content later!

19

Minimal Implementation
•Status codes
–200_OK
–404_NOT_FOUND
–411_LENGTH_REQUIRED
–500_INTERNAL_SERVER_ERROR
–501_NOT_IMPLEMENTED
–503_SERVICE_UNAVAILABLE
–505_HTTP_VERSION_NOT_SUPPORTED

20

Minimal Implementation
•General Headers
–Connection

–Date

•Response Headers
–Server should always be: Liso/1.0

•Entity Headers
–Content-Length

–Content-Type

–Last-Modified

21

Be careful with the buffers!
•Requests may straddle multiple recv calls
–Need to maintain state information.
•If request header size > 8192 bytes
–For now, send error message and disconnect.

 Flex Tutorial
15-441: Computer
Networks

23

What && Why
•Flex (fast lexical analyzer generator) is a lexer. it
scans strings to identify keywords, numbers and
tokens.
•your http parser need a lexer.
•You have two options for a lexer:
A. hand write your lexer
B. flex generates C code of your lexer

24

How
•Some knowledge of regular expression
•Write your lex file
•Compile it to a c file
•Compile your c file
flex -o foo.c foo.lex
gcc foo.c

Example

26

All questions?

