Version Control with Git
and
What is there in Project 1

PALLABI GHOSH
— (PALLABIG@ANDREW.CMU.EDU)
15-441 COMPUTER NETWORKS
RECITATION 1

What is version control?

* Revisit previous code versions

* Backup projects
* Work with others

* Find where things broke

Version Control Workflow

* Check for any remote updates

= Do your work

= Test your work

= Check differences, try to isolate changes
" Check for any remote updates

= Commit your work

_

Options

= Git ®
= Subversion (svn) ® glt

= Mercurial (h P
hg) “="SUBVERSION
= Bazaar (bzr)

= CVS ®
- D

= QOthers...

mercurial

SVIN

Usually remotely hosted, _
shared with a team. svn Repository

| svn checkout
svn commit svn update

Your private universe,
before commit.

_

Working Copy

git

glt - git
USh k) w
torvalds Jaharkes

No notion of “working copy”—each
gitpull s 5 full repository. git pull

—
S

. | -
bgilbert git push git puII
git puIR - glt pull

_

-) - ™
Remote Clone ‘| BranchesT Working Files

pull :>

______ ___ I
v --track checkout >

reset --hard >

merge >

|~

Stage

< push <commit add

|

< commit -a

Creating a Repository
(repo)

Create locally

git init .

Create remote

git init —bare

Clone local copy

git clone git://path/to/repo

_

--bare or not?

= No-bare
= Creates a repository in your working directory

= Don’t need to create multiple copies of your repo
= Won’t help if you nuke the directory/disk
= This is probably what you need if you’ll work in AFS

= --bare
= Creates a “server copy” for hosting the project

= Workflow more similar to svn (but still better)

= Everyone pushes to shared bare repo (like svn)

= You don’t work in this copy; must clone elsewhere
= You want this to develop on your PC

_

Aside: network protocols

= Use different protocols to pull/push to repositories.

" |f on the same computer:
= git://path/to/repo

= |f hosted on AFS
= ssh+git://path/to/repo

* No ssh keys for AFS, sorry

_

Aside: Configure git

git config --global user.name “Pallabi Ghosh”

git config --global user.email
“pallabig@Andrew.cmu.edu’

Clone

Pull a copy of the repo to develop on

git clone git://path/to/repo

git clone ssh+git://
unix.andrew.cmu.edu/afs/andrew/

course/15/441-641/ANDREWID/
ANDREWID-15-441-project-1.g1t

_

status

= Which files changed?

= Which files aren’t being watched?

= Which files are stashed for commit?

git status

_

Pull

" Get latest updates from remote copy

git pull

= |f this fails, you probably need to commit any unsaved
changes

_

Commit

= Merge your changes into the repository

git add foo.c ..

git commit

Push

" Don’t push broken code!!

git push

= |f this fails, you probably need to pull first

_

Branch & Merge

= Work on something different, without disturbing mas?
trunk

git branch branch_name
. \
git checkout branch_name _—
/
do stuff.. oscas |le—{ 3cacz le—d £30m
—
c2b%e
git checkout master T
git merge branch_name e

_

Tag

= Mark a revision as “final” or “ready”

git tag tag_name

git push --tags

Remote Hosting

= github.com

bitbucket.org
= svhhub.com
= AFS

" Google code

= Sourceforge

Aside: AFS Permissions

= To make a bare repo in AFS that someone else can pull/
push from:

1. Make a new directory in your home dir
2. fssa. ANDREWID rlidwk
3. gitinit --bare

_

Good practices

= Small commits

= Useful messages
= Commit frequently
= Develop in branches

= Tag releasable versions

_

Small commits

= Only change one thing per commit

= When something breaks, easier to trace

Helpful commit messages

= Say what you changed

= Keep the first line short

= Make commits easy to find

= www.commitlogsfromlastnight.com

Commit Frequently

= Make changes, commit them

* When something breaks, go to the commit that broke it

= Only push when ready for others to get the changes
= Don’t make your teammates hate you

Git questions?

Who took 15-2137

And made an HTTP proxy?

Project 1: HTTP déja vu

= Blast from the past 15-213

= This time a real HTTP server with:
= SSL

= select() 10 for concurrent connections
= HTTP 1.1
= CaGl

" Big project, start early!

_

Checkpoint 1 — September
5

= Create a git repo named 15-441-project-1

* Code a select()-based echo server handling multiple
clients at once (building on the supplied echo server)

Read the handout carefully — lots of
great references

And once again — start early ©

_

What do you want to build?

A webserver that can handle multiple concurrent
connections!

What's the problem?

Blocking!

What's the solution?

Threading or select()

Threading approach

= Did in 15-213?7

= Main server blocks on accept()
= Accept incoming connection
= Fork() child process for each connection

= Pain!
= Need to manage a pool of threads

= And what if tasks have to communicate?

_

World of select()

= Event driven programming!

= Single process that multiplexes all requests.

= Caveat
= Programming is not so transparent!

= Server no longer acts like it has only one client!

How to use select()?

= Give select a set of sockets/file descriptors.

= select() blocks till something happens.
= Data coming in on some socket.

= Able to write to a socket.
= Exception at the socket.

* Once woken up, check for the event and service it the way
the server would do.

_

select()

#include <sys/select.h>

int select (int nfds, fd_set™ readfds,
fd _set™ writefds, fd set*
exceptfds, struct timeval *timeout);

fd set Datastructure

= Remember, file descriptor is just an integer!

= Datastructure is basically a bit array!

= Helper macros:
FD ZERO(fd set* fdset); /* initializes fdset to have Os for all fds
*/
FD SET(int fd, fd_set® fdset); /* sets the bit for fd in fdset */
FD CLR(int fd, fd_set* fdset); /* clears the bit for fd in fdset */

FD ISSET(int fd, fd_set* fdset); /* returns non-0 if fd is set else 0
*/

_

select() Parameters

The FDs between 0 to nfds-1 are checked.

Check for reading in readfds.

= Check for writing in writefds.

" Check for exception in exceptfds.
" These fd_sets can be NULL.

" timeout
= NULL - blocking

= else how long to wait for the required condition
before returning to the caller.

_

Return value, Error states

= Success — number of ready descriptors.
= readfds, writefds and exceptfds are modified

= Time expired —returns O (errno set to EINTR)

= Failure — returns -1
= EBADF, EINTR, EINVAL , ENOMEM

Pseudo-code of Usage

= nfds=0

= [Initialize readfds, writefds, exceptfds using FD_ZERO

= Add the listener socket to readfds using FD_SET and update nfds

= For each active connection

= |f connection has available read buffer, add fd to readfds (FD_SET)

= |f connection has available write buffer, add to writefds (FD_SET)

= Add to exceptfds (FD_SET) — not really needed for this project.

= Update nfds to ensure that the fd falls in the range

= select_return = select(nfds, readfds, writefds, exceptfds, NULL)

= |fselect_return>0

= Handle exceptions if any fd in exceptfds is setto 1 (FD_ISSET)

= Read data from connections for which fd in readfds is set to 1
(FD_ISSET)

= \Write data from connections for which fd in writefds is set to 1
(FD_ISSET)

= |f listener socket is set to read, accept and handle new connection.

_

Checkpoint 1 Docs

= Makefile - make sure nothing is hard coded specific to
your user; should build a file which runs the echo server
(name it lisod)

= All of your source code - all .c and .h files

= readme.txt - file containing a brief description of your
current implementation of server

= tests.txt - file containing a brief description of your testing
methods for server

= vulnerabilities.txt - identify at least one vulnerability in
your current implementation

_

Peek into the future

" Checkpoint 2 — September 19
* Implement HTTP 1.1 parser and persistent
connections

" Checkpoint 3 — October 3

= Implement HTTPS handshaking and persistent
connections via TLS

= Implement CGI server-side.

_

All questions?

