

Wireless Challenges

- · Force us to rethink many assumptions
- Need to share airwaves rather than wire
 - · Don't know what hosts are involved
 - Host may not be using same link technology
- Mobility
- Other characteristics of wireless
 - Noisy → lots of losses
 - Often slow compared with wired (but not always)
 - · Interaction of multiple transmitters at receiver
 - · Collisions, capture, interference
 - Communication is broadcast based

2

Overview

- Internet mobility
- TCP over noisy links
- · Link layer challenges and WiFi
- Cellular

Routing to Mobile Nodes

- Obvious solution: have mobile nodes advertise route to mobile address/32
 - Should work!!!
- Why is this bad?
 - Consider forwarding tables on backbone routers
 - Would have an entry for each mobile host
 - Not very scalable
- What are some possible solutions?

How to Handle Addressing for Mobile Nodes?

- Simple existing solution: Dynamic Host Configuration (DHCP)
- · Host gets new IP address in new locations
 - · No impact on Internet routing
- Problems for the mobile host
 - Host does not have constant name/address
 → how do others contact host?
 - What happens to active transport connections when the host moves?

We Can Fix the Naming Problem

- Use DNS and update name-address mapping whenever host changes address
 - An awkward solution, at best
 - Increases "write" load on DNS
 - · Also raises security issues
- Fixes contact problem but the broken transport connection problem remains

6

How to Handle Transport Connections for Mobile Nodes?

- TCP currently uses 4 tuple to describe connection
 - <Src Addr, Src port, Dst addr, Dst port>
- Modify TCP to allow peer's address to be changed during connection
- Security issues
 - Can someone easily hijack connection?
- Difficult deployment → both ends must support mobility

How about Link Layer Mobility?

- Link layer mobility is easier
- Learning bridges can handle mobility → this
 is how it is handled at CMU
- Wireless LAN (802.11) also provide some help to reduce impact of handoff
 - Reduce latency, packet loss
- Problem is with inter-network mobility, i.e. Changing IP addresses
 - Need to make it look as if we stay in the same network

Mobile IP: Supporting Host Mobility in the Internet

- Allow mobile node to keep same address and name
- How do we deliver IP packets when the endpoint moves?
 - · Can't just have nodes advertise route to their address
- What about packets from the mobile host?
 - Routing not a problem
 - What source address on packet? → this can cause problems
- Key design considerations
 - Scale
 - Incremental deployment

9

Basic Solution to Mobile Routing

- Same as other problems in computer science
 - Add a level of indirection
- Keep some part of the network informed about current location
 - Need technique to route packets through this location (interception)
- Need to forward packets from this location to mobile host (delivery)

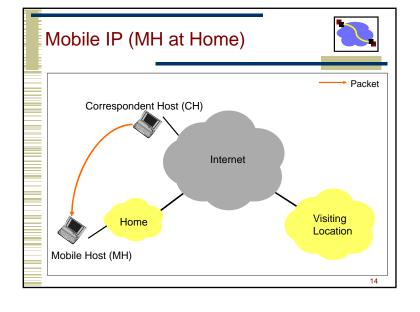
10

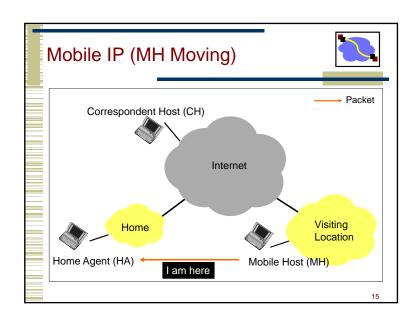
Interception

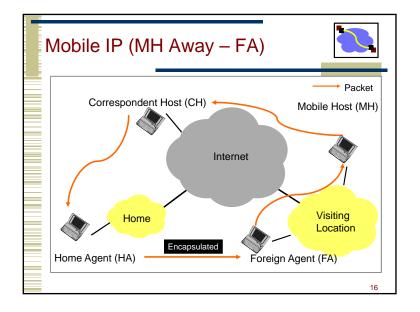
- When a host sends a packet to the mobile host, it is intercepted so the packet can be forwarded to the mobile host's real location
- Interception must happen somewhere along normal forwarding path
 - At source
 - Any router along path
 - · Router to home network
 - Machine on home network (masquerading as mobile host)

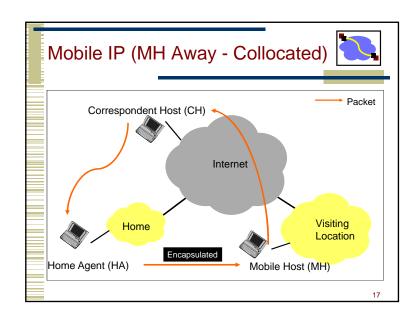
1

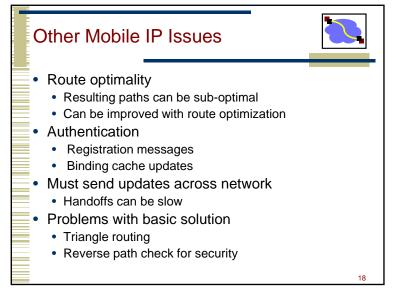
Delivery

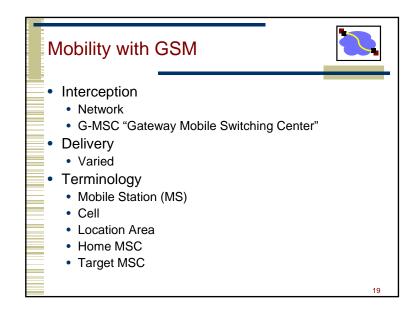


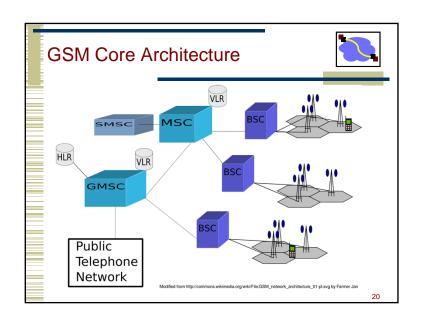

- Need to get packet to mobile host's current location
- Tunnels
 - Tunnel endpoint = current location
 - Tunnel contents = original packets
- Source routing
 - Loose source route through mobile current location

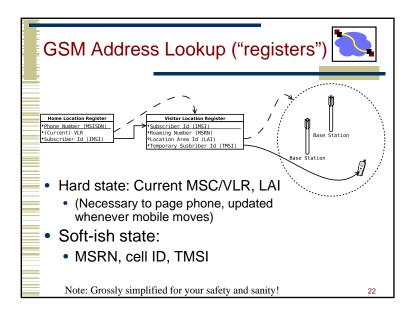

Mobile IP (RFC 2290)

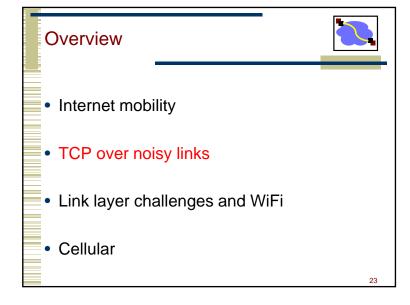


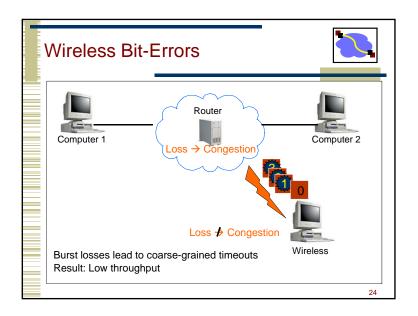

- Interception
 - Typically home agent a host on home network
- Delivery
 - Typically IP-in-IP tunneling
 - Endpoint either temporary mobile address or foreign agent
- Terminology
 - Mobile host (MH), correspondent host (CH), home agent (HA), foreign agent (FA)
 - · Care-of-address, home address



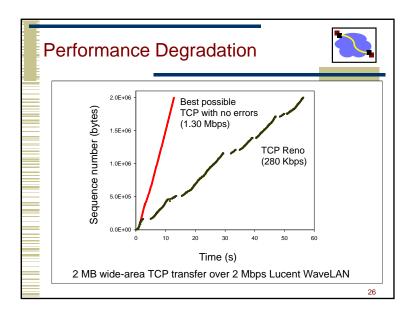






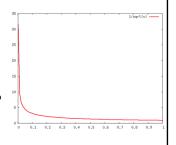

GSM Addressing Hierarchy

- Device
 - IMEI (International Mobile Equipment Identifier)
- User
 - IMSI (International Mobile Subscriber Identifier)
 - MSISDN (Mobile Subscriber IDSN Number)
 - "Real phone number"
 - MSRN (Mobile Station Roaming Number)
 - TMSI (Temporary Mobile Subscriber Identity
 - LMSI (Local Mobile Subscriber Identity)
- Other
 - LAI (Location Area Identity)
 - CI (Cell Identity)

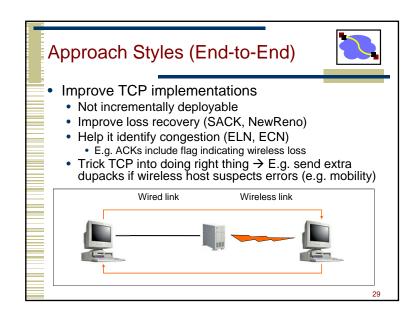


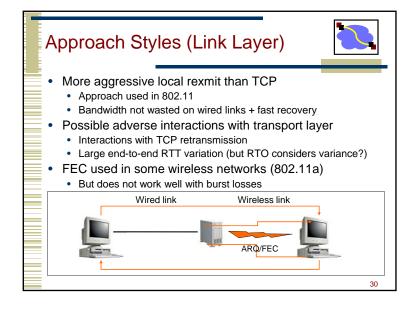
TCP Problems Over Noisy Links

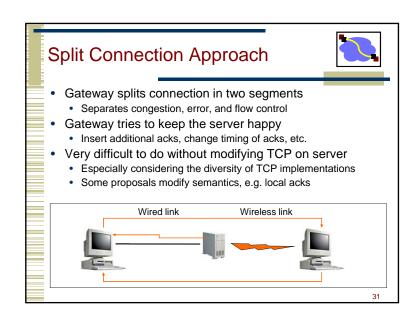
- Wireless links are inherently error-prone
 - Fades, interference, attenuation
 - Errors often happen in bursts
- TCP cannot distinguish between corruption and congestion
 - TCP unnecessarily reduces window, resulting in low throughput and high latency
- Burst losses often result in timeouts
- Sender retransmission is the only option
 - Inefficient use of bandwidth

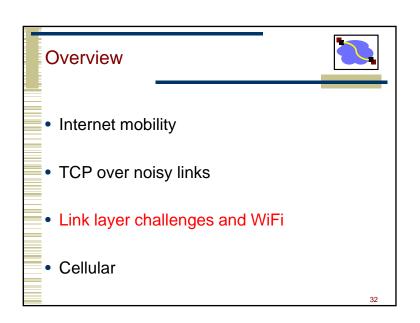

25

Performance Degradation 2


- Recall TCP throughput / loss / RTT rel:
 - BW = MSS / (rtt * sqrt(2p/3))
 - = proportional to 1 / rtt * sqrt(p)
 - == ouch!
 - Normal TCP operating range: < 2% loss Internet loss usually < 1%



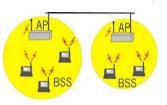

Proposed Solutions



- Incremental deployment
 - Solution should not require modifications to fixed hosts
 - If possible, avoid modifying mobile hosts
- End-to-end protocols
 - Selective ACKs, Explicit loss notification
- Split-connection protocols
 - Separate connections for wired path and wireless hop
- Reliable link-layer protocols
 - Error-correcting codes
 - · Local retransmission

IEEE 802.11 Wireless LAN

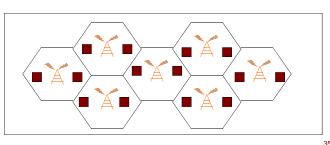
- 802.11b
 - 2.4-2.5 GHz unlicensed radio spectrum
 - 20 MHz channel
 - up to 11 Mbps
- 802.11a
 - 5-6 GHz range
 - · 20 MHz channel
 - up to 54 Mbps
 - · OFDM in physical layer
- 802.11g
 - 2.4-2.5 GHz range
 - Otherwise like a


- 802.11n
 - 20 or 40 MHz channel
 - (up to) 4x4 MIMO
 - Up to 600 Mbps
- 802.11ac
 - 80 or 160 MHz channel
 - (up to) 8x8 MIMO
 - Up to 6 Gbps
- All use CSMA/CA for multiple access
- All have base-station and ad-hoc network versions

33

IEEE 802.11 Wireless LAN

- Wireless host communicates with a base station
 - Base station = access point (AP)
- Basic Service Set (BSS) (a.k.a. "cell") contains:
 - Wireless hosts
 - Access point (AP): base station
- BSS's combined to form distribution system (DS)



34

Cellular Reuse

- Transmissions decay over distance
 - Spectrum can be reused in different areas
 - · Different "LANs"
 - Decay is 1/R² in free space, 1/R⁴ in some situations

Ad Hoc Networks

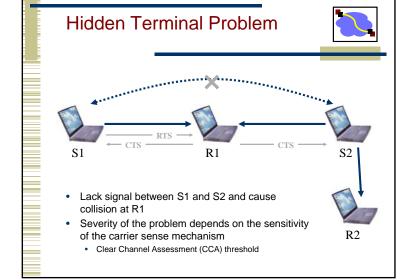
- Ad hoc network: IEEE 802.11 stations can dynamically form network without AP
- Applications:
 - Laptops meeting in conference room, car
 - Interconnection of "personal" devices

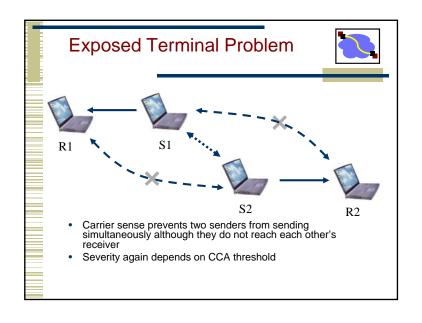
But We Need a MAC

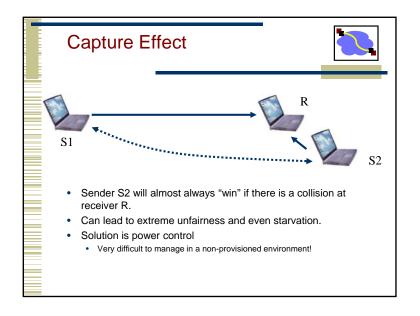
- How do we get a bunch of nodes that can all hear each other to talk nicely?
- Sounds familiar?
- Ethernet or CSMA/CD: carrier-sense multiple access with collision detection
 - · Listen before you talk
 - When node senses a collision, it aborts and retries the transmission

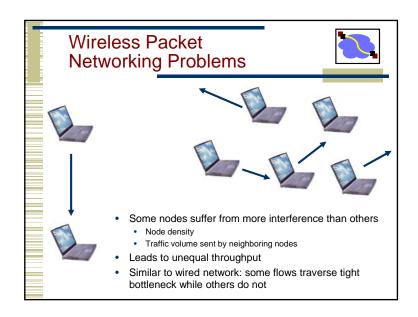
37

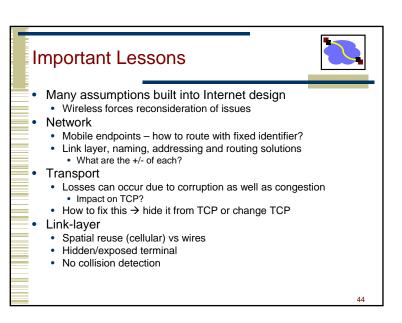
Wireless Ethernet is a Good Idea, but ...




- Attenuation varies with media
 - Also depends strongly on distance, frequency
- Wired media has exponential dependence
 - Received power at d meters proportional to 10^{-kd}
 - Attenuation in dB = k d, where k is dB/meter
- Wireless media has logarithmic dependence
 - Received power at d meters proportional to d⁻ⁿ
 - Attenuation in dB = n log d, where n is path loss exponent; n=2 in free space
 - Signal level maintained for much longer distances?
- But we are ignoring the constants!
 - Wireless attenuation at 2.4 GHz: 60-100 dB
 - · In practice numbers can be much lower for wired


Implications for Wireless Ethernet




- · Collision detection is not practical
 - Ratio of transmitted signal power to received power is too high at the transmitter
 - Transmitter cannot detect competing transmitters (is deaf while transmitting)
 - So how do you detect collisions?
- Not all nodes can hear each other
 - A problem for carrier sense
 - Hidden terminals, exposed terminals,
 - · Capture effects
- Made worse by fading
 - · Changes over time!

