
1

15-441 Computer Networking

Lecture 22 – Security: DOS
Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

15-441
15-641

With slides from: Debabrata Dash, Nick Feamster, Vyas Sekar,
and others

Our “Narrow” Focus

• Yes:
• Creating a “secure channel” for communication (Part I)
• Protecting network resources and limiting connectivity

(Part II)
• “Network Security”

• No:
• Preventing software vulnerabilities & malware, or
“social engineering”.

• “Software Security”

2

Security Vulnerabilities

• Exist at every layer in the protocol stack!

• Network-layer attacks
• IP-level vulnerabilities
• Routing attacks

• Transport-layer attacks
• TCP vulnerabilities

• Application-layer attacks

3

IP-level vulnerabilities

• IP addresses are provided by the source
• Spoofing attacks

• Using IP address for authentication
• Should be rare today

• Some “features” that have been exploited
• Fragmentation
• Broadcast for traffic amplification

4

2

Fun with IP Spoofing

• The IP addresses are filled in by the originating host
• Address spoofing

• Using source address for authentication
• r-utilities (rlogin, rsh, rhosts etc..)

Internet

2.1.1.1
C

1.1.1.1 1.1.1.2
A B

1.1.1.3
S

•Can A claim it is B to
the server S?

•ARP Spoofing

•Can C claim it is B to
the server S?

•Source Routing

5

Fun with IP Spoofing (Smurf Attack)

Attacking System

Internet

Broadcast
Enabled
Network

Victim System
6

Routing attacks

• Divert traffic to malicious nodes
• Black-hole
• Eavesdropping

• How to implement routing attacks?
• Distance-Vector:
• Link-state:

• BGP vulnerabilities

7

Routing attacks

• Divert traffic to malicious nodes
• Black-hole
• Eavesdropping

• How to implement routing attacks?
• Distance-Vector: Announce low-cost routes
• Link-state: Dropping links from topology

• BGP vulnerabilities
• Prefix-hijacking
• Path alteration

8

3

Black-hole Attacks

• All packets to destination network get dropped in
network

• Causes:
• Compromised router drops packets directly
• Compromised router sends incorrect routing info
• Maliciously crafted BGP packets
• Modified BGP packets
• Dropped BGP packets

9

TCP-level attacks

• SYN-Floods
• Implementations create state at servers before

connection is fully established

• Session hijack
• Pretend to be a trusted host
• Sequence number guessing

• Session resets
• Close a legitimate connection

10

Session Hijack

Trusted (T)

Malicious (M)

Server

First send a legitimate
SYN to server

11

Session Hijack

Trusted (T)

Malicious (M)

Server

Using ISN_S1 from earlier
connection guess ISN_S2!

1215-411: security

4

TCP SYN Flooding

• Exploit state allocated at server after initial SYN
packet

• Send a SYN and don’t reply with ACK
• Server will wait for 511 seconds for ACK

• Finite queue size for incomplete connections (1024)
• Once the queue is full it does not accept requests
• The solution is to use SYN cookies

• The server keeps no state after the SYN
• Instead, it embeds all the necessary state in the packet

as carefully crafted initial sequence number

13

TCP TCP Session Poisoning

• Send RST packet
• Will tear down connection

• Do you have to guess the exact sequence
number?
• Anywhere in window is fine
• For 64k window it takes 64k packets to reset
• About 15 seconds for a T1

14

An Example

Shimomura (S) Trusted (T)

Mitnick

Finger

• Finger @S

• showmount –e

• Send 20 SYN packets to S

• Attack when no one is around

• What other systems it trusts?

• Determine ISN behavior

Showmount -eSYN

15

Shimomura (S) Trusted (T)

Mitnick

An Example

• Finger @S

• showmount –e

• Send 20 SYN packets to S

• SYN flood T

• Attack when no one is around

• What other systems it trusts?

• Determine ISN behavior

• T won’t respond to packets

Syn flood

X

16

5

Shimomura (S) Trusted (T)

Mitnick

An Example

• Finger @S

• showmount –e

• Send 20 SYN packets to S

• SYN flood T

• Send SYN to S spoofing as T

• Send ACK to S with a
guessed number

• Attack when no one is around

• What other systems it trusts?

• Determine ISN behavior

• T won’t respond to packets

• S assumes that it has a
session with T

X
SYN

SYN|ACK

ACK

17

Shimomura (S) Trusted (T)

Mitnick

An Example

• Finger @S

• showmount –e

• Send 20 SYN packets to S

• SYN flood T

• Send SYN to S spoofing as T

• Send ACK to S with a
guessed number

• Send “echo + + > ~/.rhosts”

• Attack when no one is around

• What other systems it trusts?

• Determine ISN behavior

• T won’t respond to packets

• S assumes that it has a
session with T

• Give permission to anyone
from anywhere

X
++ > rhosts

18

Where do the problems come from?

• Protocol-level vulnerabilities
• Implicit trust assumptions in design

• Implementation vulnerabilities
• Both on routers and end-hosts

• Incomplete specifications
• Often left to the imagination of programmers

19

Outline – Part II

• Security Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

20

6

Denial of Service

• Make a service unusable/unavailable

• Disrupt service by taking down hosts
• E.g., ping-of-death

• Consume host-level resources
• E.g., SYN-floods

• Consume network resources
• E.g., UDP/ICMP floods

21

Reflector Attack

Attacker

Agent Agent

Reflector Reflector Reflector Reflector Reflector

Victim

Src = Victim
Destination = Reflector

Src = Reflector
Destination = Victim

Unsolicited traffic at victim from legitimate hosts
22

Distributed DoS

Attacker

Handler Handler

Agent Agent Agent Agent Agent

Victim

23

Distributed DoS

• Handlers are usually high volume servers
• Easy to hide the attack packets

• Agents are usually home users with DSL/Cable
• Already infected and the agent installed

• Very difficult to track down the attacker
• Multiple levels of indirection!

• Aside: How to distinguish DDos from flash crowd?

24

7

Outline – Part II

• Security, Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

25

Worm Overview

• Self-propagate through network

• Typical Steps in worm propagation
• Probe host for vulnerable software
• Exploit the vulnerability (e.g., buffer overflow)

• Attacker gains privileges of the vulnerable program
• Launch copy on compromised host

• Spread at exponential rate
• 10M hosts in < 5 minutes
• Hard to deal with manual intervention

26

Scanning Techniques

• Random

• Local subnet

• Routing Worm
• Uses information about allocated addresses from BGP

• Hitlist
• Provide list of vulnerable hosts

• Topological
• Exploit information on the infected hosts

27

Random Scanning

• 32-bit randomly generated IP address
• E.g., Slammer and Code Red I
• What about IPv6?

• Hits black-holed IP space occasionally
• Some percentage of IP space reserved
• Detect worms by monitoring unused addresses

• Honeypots/Honeynet

28

8

Subnet Scanning

• Generate last 1, 2, or 3 bytes of IP address
randomly

• Code Red II and Blaster

• Some scans must be completely random to infect
whole internet

29

Some proposals for countermeasures

• Better software safeguards
• Static analysis and array bounds checking (lint/e-fence)
• Safe versions of library calls

• gets(buf)  fgets(buf, size, ...)
• sprintf(buf, ...)  snprintf(buf, size, ...)

• Host-diversity
• Avoid same exploit on multiple machines

• Network-level: IP address space randomization
• Host-level solutions

• E.g., Memory randomization, Stack guard

• Rate-limiting: Contain the rate of spread
• Content-based filtering: signatures in packet payloads

30

Outline – Part II

• Security, Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

31

Countermeasure Overview

• High level basic approaches
• Prevention
• Detection
• Resilience

• Requirements
• Security: soundness / completeness

• Manage false positive / negative tradeoff

• Overhead
• Usability

32

9

Design questions ..

• Why is it so easy to send unwanted traffic?
• Worm, DDoS, virus, spam, phishing etc

• Where to place functionality for stopping
unwanted traffic?
• Edge vs. Core
• Routers vs. Middleboxes

• Redesign Internet architecture to detect and
prevent unwanted traffic?

33

Firewall Motivation

• Block/filter/modify traffic at network-level
• Limit access to the network
• Installed at perimeter of the network

• Why network-level?
• Vulnerabilities on many hosts in network
• Users do not keep systems up to date
• Lots of patches to keep track of
• Zero-day exploits

34

Firewalls Design

• Firewall inspects traffic that flows through it
• Allows traffic specified in the policy
• Drops everything else (“default off”)
• Two Types

• Packet Filters, Proxies

Internet

Internal Network
Firewall

35

Packet Filters

• Selectively passes packets from one network
interface to another

• Usually done within a router between external and
internal network

• What/How to filter?
• Packet Header Fields

• IP source and destination addresses
• Application port numbers
• ICMP message types/ Protocol options etc.

• Packet contents (payloads)

36

10

Packet Filters: Possible Actions

• Allow the packet to go through

• Drop the packet (Notify Sender/Drop Silently)

• Alter the packet (NAT?)

• Log information about the packet

37

Some examples

• Block all packets from outside except for SMTP
servers

• Block all traffic to/from a list of domains

• Ingress filtering
• Drop pkt from outside with addresses inside the network

• Egress filtering
• Drop pkt from inside with addresses outside the network

38

Typical Firewall Configuration

• Internal hosts can access DMZ
and Internet

• External hosts can access DMZ
only, not Intranet

• DMZ hosts can access Internet
only

• Advantages?

• If a service gets compromised
in DMZ it cannot affect internal
hosts

Internet

Intranet

DMZ

X X

39

Firewall implementation

• Stateless packet filtering firewall

• Rule  (Condition, Action)

• Rules are processed in top-down order
• If a condition satisfied – action is taken

40

11

Sample Firewall Rule

Dst Port

Allow

Allow

> 1023

22

TCP22

TCP> 1023

ExtIntOutSSH-2

IntExtInSSH-1

Dst Addr Proto ActionSrc PortSrc AddrDirRule

Allow SSH from external hosts to internal hosts
Two rules

Inbound and outbound
How to know a packet is for SSH?

Inbound: src-port>1023, dst-port=22
Outbound: src-port=22, dst-port>1023
Protocol=TCP

Problems?

41

Default Firewall Rules

• Egress Filtering
• Outbound traffic from external address  Drop
• Benefits?

• Ingress Filtering
• Inbound Traffic from internal address  Drop
• Benefits?

• Default Deny
• Why?

Any

Dst
Port

Any DenyAnyAnyIntAnyIntInIngress

DenyAnyAnyExtAnyExtOutEgress

Any DenyAnyAnyAnyAnyAnyAnyDefault

Dst
Addr Proto Ack

Set? ActionSrc
Port

Src
AddrDirRule

42

Packet Filters

• Advantages
• Transparent to application/user
• Simple packet filters can be efficient

• Disadvantages
• Usually fail open
• Very hard to configure the rules
• May only have coarse-grained information?

• Does port 22 always mean SSH?
• Who is the user accessing the SSH?

43

Alternatives

• Stateful packet filters
• Keep the connection states
• Easier to specify rules
• Problems?

• State explosion
• State for UDP/ICMP?

• Proxy Firewalls
• Two connections instead of one
• Either at transport level

• SOCKS proxy
• Or at application level

• HTTP proxy

44

12

Intrusion Detection Systems

• Firewalls allow traffic only to legitimate hosts and
services

• Traffic to the legitimate hosts/services can have
attacks

• Solution?
• Intrusion Detection Systems
• Monitor data and behavior
• Report when identify attacks

45

Summary – Part II

• Security vulnerabilities are real!
• Protocol or implementation or bad specs
• Poor programming practices
• At all layers in protocol stack

• DoS/DDoS
• Resource utilization attacks

• Worm/Malware
• Exploit vulnerable services
• Exponential spread

• Countermeasures: Firewall/IDS

46

Resources

• Textbook: 8.1 – 8.3

• Wikipedia for overview of Symmetric/Asymmetric
primitives and Hash functions.

• OpenSSL (www.openssl.org): top-rate open source code
for SSL and primitive functions.

• “Handbook of Applied Cryptography” available free online:
www.cacr.math.uwaterloo.ca/hac/

5315-411: security

