





























































Asymmetric Key Crypto:

- It is believed to be computationally unfeasible to derive K_B⁻¹ from K_B or to find any way to get M from K_B(M) other than using K_B⁻¹.
- $=> K_B can safely be made public.$

Note: We will not explain the computation that $K_B(m)$ entails, but rather treat these functions as black boxes with the desired properties.

Asymmetric Key: Sign & Verify

- If we are given a message M, and a value S such that K_B(S) = M, what can we conclude?
- The message must be from Bob, because it must be the case that S = K_B⁻¹(M), and only Bob has K_B⁻¹!
- This gives us two primitives:

Sign(M) =
$$K_B^{-1}(M)$$
 = Signature S

• Verify(S, M) = test($K_B(S) == M$)

























