
1

15-441 Computer Networking

Lecture 21 – Security: Cryptography and
key management
Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

15-441
15-641

With slides from: Debabrata Dash, Nick Feamster, Vyas Sekar,
and others

Announcements: P2

• Common problems that prevent interoperation
with test software used in autolab tests
1. The size of data in each data packet is not fixed
2. Congestion control should always start with sequence
number 1
3. The code does not need to modify the has-chunk-file or
get-chunk-file
4. Not matching the packet format in Figure 2 in handout

• Can result in 0 grade although it “kind of” works
• Might work in a system that only uses your software
• Would not work in the Internet

2

Moving Forward

• The plan is:
• TA will grade using Autolab as planned
• Will post preliminary grades
• Teams can meet with TA to adjust grade

• What we have learned:
• You cannot use Autolab as a debugging tool

• Limited I/O, limited tests, …

• You must also develop your own test scripts
• Remember that the Autolab tests are very limited – sanity check

• Please ask us if something is unclear or other things
that might help early

3

Normal Mindset

• No user would do that
• The odds of a router being misconfigured that way

is too small to worry about

4

2

Security Mindset

• The adversary will do anything it can to break
your system

• It will study your system and purposefully do the
worse thing it can

• Might even disregard its own well being
• Will attack your implementation and your

assumptions

5

Adversaries

• Possible adversaries include:
• Competitors trying harm you
• Governments trying to control you
• Criminals who want to use your system for crime
• Disgruntled employees (the insider threat)
• Hackers who find it fun to break stuff
• Others we didn’t even think of …

• Assumptions about the adversary are dangerous
• Security is very hard

6

Unlimited
resources

Knows your
source code

Destructive with
no “real” goals

Flashback .. Internet design goals

1. Interconnection
2. Failure resilience
3. Multiple types of service
4. Variety of networks
5. Management of resources
6. Cost-effective
7. Low entry-cost
8. Accountability for resources

Where is security?

Why did they leave it out?

• Designed for connectivity

• Network designed with implicit trust
• Origin as a small and cooperative network
• No “bad” guys (adversaries)

• Can’t security be provided at the edge?
• Encryption, Authentication etc
• End-to-end arguments in system design

3

Internet
Design Decisions and Security

• Global Addressing
(=> every sociopath is your next-door
neighbor*)

• Connection-less datagram service
(=> can’t verify source, hard to protect
bandwidth)

* Dan Geer 9

Internet Usage and Security

• Anyone can connect
(=> ANYONE can connect)

• Millions of hosts run nearly identical software
(=> single exploit can create epidemic)

• Most Internet users know about as much as
Senator Stevens aka “the tubes guy”

(=> God help us all…)

10

Our “Narrow” Focus

• Yes:
• Creating a “secure channel” for communication (Part I)

• End-to-end

• Protecting network resources and limiting connectivity
(Part II)
• Accountability for resources (largely not end-to-end)

• No:
• Preventing software vulnerabilities & malware, or

“social engineering”.

11

Secure Communication with an
Untrusted Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice

Bob

12

4

Secure Communication with an
Untrusted Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice

Bob
Carol

13

Secure Communication with an
Untrusted Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice
Hello, I’m

“Bob”

14

What do we need for a
Secure Communication Channel?

• Authentication (Who am I talking to?)

• Confidentiality (Is my data hidden?)

• Integrity (Has my data been modified?)

• Availability (Can I reach the destination?)

15

What is cryptography?

"cryptography is about communication in the
presence of adversaries."

- Ron Rivest

“cryptography is using math and other crazy tricks to
approximate magic”

- Unknown 441 TA

16

5

What is cryptography?

Tools to help us build secure communication
channels that provide:

1) Authentication
2) Integrity
3) Confidentiality

17

Cryptography As a Tool

• Using cryptography securely is not simple
• Designing cryptographic schemes correctly is

near impossible.

Today we want to give you an idea of what can be
done with cryptography.
Take a security course if you think you may use it
in the future

18

The Great Divide

Symmetric Crypto
(Private key)
(E.g., AES)

Asymmetric Crypto
(Public key)
(E.g., RSA)

Shared secret
between parties? Yes

Speed of crypto
operations Slow

No

Fast

19

Symmetric Key Cryptography:
Confidentiality

Motivating Example:
You and a friend share a key K of L random bits, and
want to secretly share message M also L bits long.

Scheme:
You send her the xor(M,K) and then she “decrypts”
using xor(M,K) again.

1) Do you get the right message to your friend?

2) Can an adversary recover the message M?

3) Can adversary recover the key K?

20

6

Symmetric Key: Example

• One-time Pad (OTP) is proven “information-
theoretically secure” (Claude Shannon, 1949)
• No information provided about the message other than its

length
• Impressive?
• Assumptions:

• Perfectly random one-time pads
• One-time pad at least the length of the message
• Never can reuse a one-time pad
• Adversary can never know the one-time pad

21

Symmetric Key: Reality

• All ciphers suffer from assumptions, but one-time
pad’s are impractical to maintain
• Key is as long at the message
• Keys cannot be reused

• In practice, two types of ciphers are used that
require constant length keys:
• Stream Ciphers

Ex: RC4, A5

• Block Ciphers
Ex: DES, AES, Blowfish

22

Symmetric Key: Stream Ciphers

• Example: RC4

PRNG Pseudo-Random stream of L bits

Message of Length L bits
XOR

=

Encrypted Ciphertext

K A-B

Bob uses KA-B as PRNG seed, and XORs encrypted text
to get the message back (just like OTP).

Alice:

23

Symmetric Key: Block Ciphers

Block 4Block 3Block 2Block 1

Round #1 Round #2 Round #n

Block 1

 Example: AES

K A-B

Alice:

Bob breaks the ciphertext into blocks, feeds it through
decryption engine using KA-B to recover the message.

Block 2 Block 3 Block 4

(fixed block size,
e.g. 128 bits)

24

7

Cryptographic Hash Functions

• Consistent
hash(X) always yields same result

• One-way
given Y, can’t find X s.t. hash(X) = Y

• Collision resistant
given hash(W) = Z, can’t find X such that hash(X) = Z

Hash FnMessage of arbitrary length
Fixed Size

Hash

25

Symmetric Key: Integrity

• Hash Message Authentication Code (HMAC)

Hash Fn
Message

MAC Message

Alice Transmits Message & MAC

Why is this secure?
How do properties of a hash function help us?

MAC

Step #1:

Alice creates
MAC

Step #2 Step #3

Bob computes MAC with
message and KA-B to verify.

K A-B

26

Symmetric Key: Authentication

• You already know how to do this!
(hint: think about how we showed integrity)

Hash Fn
I am Bob

A43FF234

Alice receives the hash, computes a hash with KA-B , and she
knows the sender is Bob

Whoops!

K A-B

27

Symmetric Key: Authentication

What if Mallory overhears the hash sent by Bob, and
then “replays” it later?

ISP A

ISP D

ISP C

ISP B

Hello, I’m
Bob. Here’s
the hash to
“prove” it

A43FF234

28

8

Symmetric Key: Authentication

• A “Nonce”
• A random bitstring used only once. Alice sends nonce to Bob as a

“challenge”. Bob Replies with “fresh” MAC result.

Hash
Nonce

B4FE64

Bob

K A-B

Nonce

B4FE64

Alice

Performs same
hash with KA-B
and compares
results

29

Symmetric Key: Authentication

• A “Nonce”
• A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC
result.

Nonce

Alice

?!?!

If Alice sends Mallory a nonce,
she cannot compute the
corresponding MAC without K A-B

Mallory

30

Symmetric Key Crypto Review

• Confidentiality: Stream & Block Ciphers
• Integrity: HMAC
• Authentication: HMAC and Nonce

Questions??

Are we done? Not Really:

1) Number of keys scales as O(n2)

2) How to securely share keys in the first place?

31

Asymmetric Key Crypto:

• Instead of shared keys, each person has a “key
pair”

Bob’s public key

Bob’s private key

KB

KB
-1

 The keys are inverses, so: KB
-1 (KB (m)) = m

32

9

Asymmetric Key Crypto:

 It is believed to be computationally unfeasible to
derive KB

-1 from KB or to find any way to get M
from KB(M) other than using KB

-1 .

=> KB can safely be made public.

Note: We will not explain the computation that KB(m) entails, but rather treat

these functions as black boxes with the desired properties.

33

Asymmetric Key: Confidentiality

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
message

KB (m)

Bob’s private
key

m = KB
-1 (KB (m))

KB

KB
-1

34

Asymmetric Key: Sign & Verify

 The message must be from Bob, because it must be the
case that S = KB

-1(M), and only Bob has KB
-1 !

 If we are given a message M, and a value S such that
KB(S) = M, what can we conclude?

 This gives us two primitives:
 Sign(M) = KB

-1(M) = Signature S
 Verify(S, M) = test(KB(S) == M)

35

Asymmetric Key:
Integrity & Authentication

• We can use Sign() and Verify() in a similar manner as
our HMAC in symmetric schemes.

Integrity: S = Sign(M) Message M

Receiver must only check Verify(M, S)

Authentication:

Nonce

S = Sign(Nonce)
Verify(Nonce, S)

36

10

Asymmetric Key Review:

• Confidentiality: Encrypt with Public Key of
Receiver

• Integrity: Sign message with private key of the
sender

• Authentication: Entity being authenticated signs a
nonce with private key, signature is then verified
with the public key

But, these operations are computationally
expensive*

37

One last “little detail”…

How do I get these keys in the first place??
Remember:

• Symmetric key primitives assumed Alice and Bob
had already shared a key.

• Asymmetric key primitives assumed Alice knew
Bob’s public key.

This may work with friends, but when was the last
time you saw Amazon.com walking down the street?

38

Symmetric Key Distribution

• How does Andrew do this?

Andrew Uses Kerberos, which relies on a
Key Distribution Center (KDC) to establish
shared symmetric keys.

39

Key Distribution Center (KDC)

• Alice, Bob need shared symmetric key.
• KDC: server shares different secret key with each

registered user (many users)
• Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for

communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

40

11

Key Distribution Center (KDC)

Alice
knows R1

Bob knows to
use R1 to

communicate
with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared symmetric
secret key to communicate with each other?

KDC
generates

R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

41

How Useful is a KDC?

• Must always be online to support secure
communication

• KDC can expose our session keys to others!
• Centralized trust and point of failure.

In practice, the KDC model is mostly used within
single organizations (e.g. Kerberos) but not more
widely.

42

Certification Authorities

• Certification authority (CA): binds public key to
particular entity, E.

• An entity E registers its public key with CA.
• E provides “proof of identity” to CA.
• CA creates certificate binding E to its public key.
• Certificate contains E’s public key AND the CA’s signature of

E’s public key.

Bob’s
public

key

Bob’s
identifying

information

CA
generates

S = Sign(KB)
CA

private
key

certificate = Bob’s
public key and

signature by CA

KB

K-1
CA

KB

43

Certification Authorities

• When Alice wants Bob’s public key:
• Gets Bob’s certificate (Bob or elsewhere).
• Use CA’s public key to verify the signature within

Bob’s certificate, then accepts public key

Verify(S, KB)

CA
public

key KCA

KB If signature
is valid, use
KB

44

12

Certificate Contents
• info algorithm and key value itself (not shown)

 Cert owner
 Cert issuer
 Valid dates
 Fingerprint

of signature

4515-411: security

Transport Layer Security (TLS)
aka Secure Socket Layer (SSL)

• Used for protocols like HTTPS

• Special TLS socket layer between application and
TCP (small changes to application).

• Handles confidentiality, integrity, and authentication.

• Uses “hybrid” cryptography.

46

Setup Channel with TLS “Handshake”

Handshake Steps:

1) Client and server negotiate
exact cryptographic protocols

2) Client validates public key
certificate with CA public key.

3) Client encrypts secret random
value with server’s key, and
sends it as a challenge.

4) Server decrypts, proving it has
the corresponding private key.

5) This value is used to derive
symmetric session keys for
encryption & MACs.

47

Summary – Part I

• Internet design and growth => security challenges
• Symmetric (pre-shared key, fast) and asymmetric

(key pairs, slow) primitives provide:
• Confidentiality
• Integrity
• Authentication

• “Hybrid Encryption” leverages strengths of both.
• Great complexity exists in securely acquiring keys.
• Crypto is hard to get right, so use tools from others,

don’t design your own (e.g. TLS).

48

13

Resources

• Textbook: 8.1 – 8.3

• Wikipedia for overview of Symmetric/Asymmetric
primitives and Hash functions.

• OpenSSL (www.openssl.org): top-rate open source code
for SSL and primitive functions.

• “Handbook of Applied Cryptography” available free online:
www.cacr.math.uwaterloo.ca/hac/

49

