
1

15-441 Computer Networking

Lecture 17: Delivering Content
Peer to Peer Examples

Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

15-441
15-641

Overview

• Web
• Consistent hashing
• Peer-to-peer

• Motivation
• Architectures
• TOR
• Skype

• CDN
• Video

2

3

The Solution Space

• Centralized Database
• Napster

• Query Flooding
• Gnutella

• Intelligent Query Flooding
• KaZaA

• Swarming
• BitTorrent

• Structured Overlay Routing
• Distributed Hash Tables

4

KaZaA: Query Flooding

• First released in 2001 and still used today
• Also very popular

• Join: on startup, client contacts a “supernode” ... may at
some point become one itself

• Publish: send list of files to supernode
• Search: send query to supernode, supernodes flood query

amongst themselves.
• Fetch: get the file directly from peer(s); can fetch

simultaneously from multiple peers

2

5

KaZaA: Network Design

“Super Nodes”

6

KaZaA: File Insert

I have X!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

7

KaZaA: File Search

Where is file A?

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

8

KaZaA: Fetching

• More than one node may have requested file...
• How to tell?

• Must be able to distinguish identical files
• Not necessarily same filename
• Same filename not necessarily same file...

• Use Hash of file
• KaZaA uses UUHash: fast, but not secure
• Alternatives: MD5, SHA-1

• How to fetch?
• Get bytes [0..1000] from A, [1001...2000] from B
• Alternative: Erasure Codes

3

9

KaZaA: Discussion

• Pros:
• Tries to take into account node heterogeneity:

• Bandwidth
• Host Computational Resources
• Host Availability (?)

• Rumored to take into account network locality

• Cons:
• Mechanisms easy to circumvent
• Still no real guarantees on search scope or search time

• Similar behavior to gnutella, but better.

10

Stability and Superpeers

• Why superpeers?
• Query consolidation

• Many connected nodes may have only a few files
• Propagating a query to a sub-node would take more b/w than

answering it yourself

• Caching effect
• Requires network stability

• Superpeer selection is time-based
• How long you have been on is a good predictor of how

long you will be around

11

The Solution Space

• Centralized Database
• Napster

• Query Flooding
• Gnutella

• Intelligent Query Flooding
• KaZaA

• Swarming
• BitTorrent

• Structured Overlay Routing
• Distributed Hash Tables

• More on Thursday …

12

BitTorrent: History

• In 2002, B. Cohen debuted BitTorrent
• Key Motivation:

• Popularity exhibits temporal locality (Flash Crowds)
• E.g., Slashdot effect, CNN on 9/11, new movie/game release

• Focused on Efficient Fetching, not Searching:
• Distribute the same file to all peers
• Single publisher, multiple downloaders

• Has some “real” publishers:
• Blizzard Entertainment using it to distribute the beta of their new

game

4

13

BitTorrent: Swarming

• Starting in 2001 to efficiently support flash crowds
• Focus is on fetching, not searching

• Join: contact central “tracker” server for list of peers.
• Publish: Run a tracker server.
• Search: Find a tracker out-of-band for a file, e.g., Google
• Fetch: Download chunks of the file from your peers.

Upload chunks you have to them.
• Big differences from Napster:

• Chunk based downloading (sound familiar? :)
• “few large files” focus
• Anti-freeloading mechanisms

14

BitTorrent: Publish/Join

Tracker

15

BitTorrent: Fetch

16

BitTorrent: Sharing Strategy

• Employ “Tit-for-tat” sharing strategy
• A is downloading from some other people

• A will let the fastest N of those download from him
• Be optimistic: occasionally let freeloaders download

• Otherwise no one would ever start!
• Also allows you to discover better peers to download from when

they reciprocate

• Goal: Pareto Efficiency
• Game Theory: “No change can make anyone better off

without making others worse off”
• Does it work? (don’t know!)

5

17

BitTorrent: Summary

• Pros:
• Works reasonably well in practice
• Gives peers incentive to share resources; avoids

freeloaders
• Cons:

• Pareto Efficiency relative weak condition
• Central tracker server needed to bootstrap swarm
• (Tracker is a design choice, not a requirement, as you

know from your projects. Could easily combine with
other approaches.)

31

When are p2p Useful?

• Caching and “soft-state” data
• Works well! BitTorrent, KaZaA, etc., all use peers as

caches for hot data
• Finding read-only data

• Limited flooding finds hay
• DHTs find needles

• BUT they are not a “Google”
• Complex intersection queries (“the” + “who”): billions of

hits for each term alone
• Sophisticated ranking: Must compare many results

before returning a subset to user
• Need massive compute power

32

Writable, Persistent p2p

• Do you trust your data to 100,000 monkeys?
• May be ok for “free” song, but not for information critical

to a company
• E.g., how about DNS based on a DHT?

• Node availability hurts
• Ex: Store 5 copies of data on different nodes
• When someone goes away, you must replicate the data

they held
• Hard drives are *huge*, but cable modem upload

bandwidth is tiny - perhaps 10 Gbytes/day
• Takes many days to upload contents of 200GB hard

drive. Very expensive leave/replication situation!

Overview

• Web
• Consistent hashing
• Peer-to-peer

• Motivation
• Architectures
• TOR
• Skype

• CDN
• Video

33

6

slide 34

Tor Anonymity Network

• Deployed onion routing network
• http://torproject.org
• Specifically designed for low-latency anonymous

Internet communications
• Running since October 2003

• Thousands of relay nodes, 100K-500K? of users
• Easy-to-use client proxy, integrated Web browser

• Not like FreeNet – no data “in” TOR
• Really an overlay – not pure peer-to-peer

Based on slides by Vitaly Shmatikov
slide 35

Tor Circuit Setup (1)

• Client proxy establish a symmetric session key and
circuit with relay node #1

• All data sent over the circuit is encrypted A = K(B)k

slide 36

Tor Circuit Setup (2)

• Client proxy extends the circuit by establishing a
symmetric session key with relay node #2
• Tunnel through relay node #1

slide 37

Tor Circuit Setup (3)

• Client proxy extends the circuit by establishing a
symmetric session key with relay node #3
• Tunnel through relay nodes #1 and #2

7

slide 38

Using a Tor Circuit

• Client applications connect and communicate over the
established Tor circuit
• Datagrams decrypted at each link

• Also want end-to-end encryption – not done by Tor

slide 39

Using Tor

• Many applications can share one circuit
• Multiple TCP streams over one anonymous connection

• Tor router doesn’t need root privileges
• Encourages people to set up their own routers
• More participants = better anonymity for everyone

• Directory servers
• Maintain lists of active relay nodes, their locations,

current public keys, etc.
• Control how new nodes join the network

• “Sybil attack”: attacker creates a large number of relays

• Directory servers’ keys ship with Tor code

Overview

• Web
• Consistent hashing
• Peer-to-peer

• Motivation
• Architectures
• TOR
• Skype

• CDN
• Video

40 41

What is Skype?

• Support pc-to-pc, pc-to-phone, phone-to-pc VoIP and IM
client communication
• Also: conference calls, video, …

• Developed by people who created KaZaa
• Has peer-to-peer features that will look familiar

• Supported OS: Windows, Linux, MacOS, PocketPC
• A p2p illusion

• Login server
• Buddy-list server
• Servers for SkypeOut and SkypeIn
• Anonymous call minutes statistic gathering

Based on slides by Baset and Schulzrinne (Infocom 06)

8

42

What problems does it solve?

• NAT and firewall traversal
• Nielsen September 2005 ratings

• 61.3% of US home internet users use broadband
(http://www.nielsen-netratings.com/pr/pr_050928.pdf)

• ‘Most’ users have some kind of NAT

• Calls between traditional telephone and internet devicese
• SkypeOut (pc-to-phone)

• Terms of service: governed by the laws of Luxembourg

• SkypeIn (phone-to-pc), voicemail
• Configuration-less connectivity
• Scalability for member data and call bandwidth

43

The Skype Network

44

Primary Skype Components

• Ordinary host (OH)
• A Skype client (SC)

• Super nodes (SN)
• A Skype client (SC)
• Has public IP address, ‘sufficient’ bandwidth, CPU

and memory
• Login server

• Stores Skype id’s, passwords, and buddy lists
• Used at login for authentication
• Version 1.4.0.84: 212.72.49.141 and 195.215.8.141

45

Skype Components: Ports

• No default listening port
• Randomly chooses a port (P1) on installation
• Opens TCP and UDP listener sockets at P1
• Opens TCP listener sockets at port 80 (HTTP)

and port 443 (HTTPS)

9

46

Skype Components: Host Cache

• IP address and port number of online Skype
nodes (SNs)

• Maximum size: 200 entries
• Liang, Kumar and Ross. Understanding KaZaA

• 200 entries for ordinary nodes (ON)
• Login server IP address and port number
• HC Windows location

C:\Documents and Settings\All Users\Application Data\Skype

47

Experimental Setup Used in Study

• We have NOT reverse engineered Skype executable
but it can be done (Biondi and Desclaux)

• Skype version: Linux v1.2, Windows v1.4.0.84
• Experiments performed between June-July and

Nov-Dec 2005
• Tools Used

• Ethereal (for packet capture)
• NetPeeker (for tuning per process bandwidth)
• NCH Tone generator (for generating tones of various

frequencies)
• APIMonitor (for monitoring the system calls)
• LD_PRELOAD: Linux shared library and system call

interception
• Skype fails to run with ltrace and strace

48

Skype Functions

• Startup
• Login
• User search
• Call establishment
• Media transfer
• Keep-alive
• NAT and firewall traversal
• Conferencing

49

Skype Functions: LOGIN

• Public, NAT
• Establishes a TCP connection with the SN

• Keep connection alive by sending refresh message every 2 min.
• Authenticates with the login server
• Announces arrival on the network (controlled flooding)
• Determines NAT type

• Firewall
• Establishes a TCP connection with the SN
• Authenticates with the login server

10

50

Skype Functions: USER SEARCH

• From the Skype website
• Guaranteed to find a user it exists and logged in the last 72

hours
• Search results are cached at intermediate nodes
• Unable to trace messages beyond SN
• Cannot force a node to become a SN

• Host cache is used for connection establishment and not for
SN selection

• User does not exist. How does search terminate?
• Skype contacts login server for failed searches

• SN searches for a user behind UDP-restricted firewall
• Same wildcard (sal*) search query from two different

machines initiated at the same time gives different
results

51

Skype Functions: CALL
ESTABLISHMENT
• Call signaling always carried over TCP and goes e2e
• Calls to non buddies=search+call
• Initial exchange checks for blocked users
• Public-public call

• Caller SC establishes a TCP connection with callee SC
• Public-NAT

• Caller SC is behind port-restricted NAT
• Different solutions based on the nature of the NAT

• Caller---->Skype node (SN?) ----> Callee
• TCP connection established between caller, callee, and more than

one Skype nodes
• Firewall-firewall call

• Same as public-NAT but no in-UDP packets

52

Skype Functions: MEDIA
TRANSFER
• No silence suppression
• Silence packets are used to

• play background noise at the peer
• maintain UDP NAT binding
• avoid drop in the TCP congestion window

• Putting a call on hold
• 1 packet/3 seconds to call-peer or Skype node
• same reasons as above

• Codec frequency range
• 50-8,000 Hz (total bw of 3 kilobytes/s)

• Reasonable call quality at (4-5 kilobytes/s)

53

Skype Super Nodes

• Skype super node: A node with which a Skype
establishes a TCP connection at login

• 8,153 successful login attempts over four days
• 35% hostnames had a .edu suffix

• 102 universities
• 894 unique super nodes
• Unique SN IP distribution:

• US 83.7%, Asia 8.9%, Europe 7.1%
• Top 20 nodes received 43.8% of the total

connections
• Top 100 nodes: 70.5%

11

54

Summary

• Selfish application
• Uses best CPU and bandwidth resources
• Evades blocking
• Change application priority to ‘High’ after call establishment
• No application configuration to prevent machine from becoming a

super node. Possible by limiting per-process bandwidth
• Code obfuscation, runtime decryption
• Login server and super nodes, not strictly peer-to-peer
• STUN and TURN equivalent functionality
• Combination of hashing and controlled flooding
• Multiple paths for ‘in-time’ switching in case of failures
• Search falls back to login server

