15-441 :
“. 15641 Computer Networking

Lecture 17: Delivering Content
Peer to Peer Examples
Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

Overview i‘,

« Web
» Consistent hashing
* Peer-to-peer
¢ Motivation
 Architectures
e TOR
e Skype
 CDN
* Video

The Solution Space “

Intelligent Query Flooding
* KazZaA

KaZaA: Query Flooding n

First released in 2001 and still used today
* Also very popular

« Join: on startup, client contacts a “supernode” ... may at
some point become one itself

e Publish: send list of files to supernode

e Search: send query to supernode, supernodes flood query
amongst themselves.

» Fetch: get the file directly from peer(s); can fetch
simultaneously from multiple peers

KaZaA: Network Design “,

“Super Nodes”

L}

I Na

KaZaA: File Insert

N

insert(X,
123.2.21.23)

Publish ‘

I have X! B
B
123.2.21.23

KaZaA: File Search “

search(A)
=
123.2.22.50

search(A)
——>
+4123.2.0.18

12399250 ’:

Que%»ﬁeplies

Where is file A? B
e

o

KaZaA: Fetching

"N

e More than one node may have requested file...
e How to tell?
¢ Must be able to distinguish identical files
¢ Not necessarily same filename
¢ Same filename not necessarily same file...
e Use Hash of file
¢ KazZaA uses UUHash: fast, but not secure
* Alternatives: MD5, SHA-1
* How to fetch?
¢ Get bytes [0..1000] from A, [1001...2000] from B
¢ Alternative: Erasure Codes

KaZaA: Discussion

«

e Pros:
» Tries to take into account node heterogeneity:
¢ Bandwidth
* Host Computational Resources
* Host Availability (?)
* Rumored to take into account network locality
e Cons:
* Mechanisms easy to circumvent
« Still no real guarantees on search scope or search time

» Similar behavior to gnutella, but better.

Stability and Superpeers “.

* Why superpeers?
¢ Query consolidation

* Many connected nodes may have only a few files

» Propagating a query to a sub-node would take more b/w than
answering it yourself

¢ Caching effect
¢ Requires network stability
e Superpeer selection is time-based

* How long you have been on is a good predictor of how
long you will be around

The Solution Space

L\

e Swarming
» BitTorrent

More on Thursday ...

BitTorrent: History i‘

* In 2002, B. Cohen debuted BitTorrent

» Key Motivation:

¢ Popularity exhibits temporal locality (Flash Crowds)

» E.g., Slashdot effect, CNN on 9/11, new movie/game release
» Focused on Efficient Fetching, not Searching:

« Distribute the same file to all peers

* Single publisher, multiple downloaders
e Has some “real” publishers:

¢ Blizzard Entertainment using it to distribute the beta of their new
game

12

BitTorrent: Swarming i‘.

Starting in 2001 to efficiently support flash crowds
e Focus is on fetching, not searching

» Join: contact central “tracker” server for list of peers.
e Publish: Run a tracker server.
» Search: Find a tracker out-of-band for a file, e.g., Google
» Fetch: Download chunks of the file from your peers.
Upload chunks you have to them.
* Big differences from Napster:
* Chunk based downloading (sound familiar? :)

» ‘“few large files” focus
¢ Anti-freeloading mechanisms

13

BitTorrent: Publish/Join N

‘ Tracker

NN

2 —2

14

BitTorrent: Fetch “

_/f/\\

2 ———=

BitTorrent: Sharing Strategy “

» Employ “Tit-for-tat” sharing strategy
¢ Ais downloading from some other people
* A will let the fastest N of those download from him

* Be optimistic: occasionally let freeloaders download
» Otherwise no one would ever start!

 Also allows you to discover better peers to download from when
they reciprocate

* Goal: Pareto Efficiency

¢ Game Theory: “No change can make anyone better off
without making others worse off”

e Does it work? (don't know!)

16

BitTorrent: Summary i‘.

* Pros:
» Works reasonably well in practice
» Gives peers incentive to share resources; avoids
freeloaders
* Cons:
 Pareto Efficiency relative weak condition
 Central tracker server needed to bootstrap swarm

e (Tracker is a design choice, not a requirement, as you
know from your projects. Could easily combine with
other approaches.)

17

When are p2p Useful? i‘

e Caching and “soft-state” data

« Works well! BitTorrent, KaZaA, etc., all use peers as
caches for hot data

e Finding read-only data
¢ Limited flooding finds hay
e DHTs find needles
e BUT they are not a “Google”
* Complex intersection queries (“the” + “who”): billions of
hits for each term alone
e Sophisticated ranking: Must compare many results
before returning a subset to user

* Need massive compute power

31

Writable, Persistent p2p “

» Do you trust your data to 100,000 monkeys?

* May be ok for “free” song, but not for information critical
to a company
» E.g., how about DNS based on a DHT?

* Node availability hurts
» Ex: Store 5 copies of data on different nodes

¢ When someone goes away, you must replicate the data
they held

» Hard drives are *huge*, but cable modem upload
bandwidth is tiny - perhaps 10 Gbytes/day

e Takes many days to upload contents of 200GB hard
drive. Very expensive leave/replication situation!

32

Overview n

 Web
» Consistent hashing
» Peer-to-peer
e Motivation
 Architectures
« TOR
e Skype
e CDN
e Video

33

Tor Anonymity Network i‘,

» Deployed onion routing network
« http://torproject.org

« Specifically designed for low-latency anonymous
Internet communications

* Running since October 2003

e Thousands of relay nodes, 100K-500K? of users
» Easy-to-use client proxy, integrated Web browser

* Not like FreeNet — no data “in” TOR
* Really an overlay — not pure peer-to-peer

Based on slides by Vitaly Shmatikov

Tor Circuit Setup (1) i‘.

 Client proxy establish a symmetric session key and
circuit with relay node #1

» All data sent over the circuit is encrypted A=K(B),

O—u

k=

Client
Initiator

Tor Circuit Setup (2) “

» Client proxy extends the circuit by establishing a
symmetric session key with relay node #2

e Tunnel through relay node #1

Client
Initiator

Tor Circuit Setup (3) m

« Client proxy extends the circuit by establishing a
symmetric session key with relay node #3

e Tunnel through relay nodes #1 and #2

O—n O—u

O—u
&r

Client
Initiator

Using a Tor Circuit “,

 Client applications connect and communicate over the
established Tor circuit

» Datagrams decrypted at each link
» Also want end-to-end encryption — not done by Tor
O—u O—u

: .
' a-___ @8- 8- /3
ol r : P
Client /

Initiator - e
z«;&il: 1 ‘- -
ol -
o—u

Using Tor “.

» Many applications can share one circuit

¢ Multiple TCP streams over one anonymous connection
« Tor router doesn’t need root privileges

¢ Encourages people to set up their own routers

« More participants = better anonymity for everyone
« Directory servers

¢ Maintain lists of active relay nodes, their locations,
current public keys, etc.
e Control how new nodes join the network
» “Sybil attack”: attacker creates a large number of relays
 Directory servers’ keys ship with Tor code

Overview “

 Web
» Consistent hashing
e Peer-to-peer
» Motivation
 Architectures
« TOR
e Skype
e CDN
* Video

40

What is Skype? i‘

e Support pc-to-pc, pc-to-phone, phone-to-pc VoIP and IM
client communication
» Also: conference calls, video, ...
» Developed by people who created KaZaa
¢ Has peer-to-peer features that will look familiar
e Supported OS: Windows, Linux, MacOS, PocketPC
e Ap2pillusion
* Login server
¢ Buddy-list server
» Servers for SkypeOut and Skypeln
« Anonymous call minutes statistic gathering

Based on slides by Baset and Schulzrinne (Infocom 06) 4

What problems does it solve? “,

e NAT and firewall traversal

¢ Nielsen September 2005 ratings
* 61.3% of US home internet users use broadband
(http://www.nielsen-netratings.com/pr/pr_050928.pdf)
* ‘Most’ users have some kind of NAT
» Calls between traditional telephone and internet devicese
e SkypeOut (pc-to-phone)
» Terms of service: governed by the laws of Luxembourg
» Skypeln (phone-to-pc), voicemail
» Configuration-less connectivity
» Scalability for member data and call bandwidth

42

The Skype Network i‘,

Skype login
server

Message exchange
with the login server
during login

ordinary host (SC)

[]
. super node (SN)

neighbor relationships in the
Skype network 43

Primary Skype Components “

¢ Ordinary host (OH)
» A Skype client (SC)
e Super nodes (SN)
» A Skype client (SC)

» Has public IP address, ‘sufficient’ bandwidth, CPU
and memory

e Login server
» Stores Skype id’s, passwords, and buddy lists
» Used at login for authentication
* Version 1.4.0.84: 212.72.49.141 and 195.215.8.141

44

Skype Components: Ports i‘

* No default listening port
» Randomly chooses a port (P1) on installation
e Opens TCP and UDP listener sockets at P1

» Opens TCP listener sockets at port 80 (HTTP)
and port 443 (HTTPS)

" seport[131 for incaming connectians

iy
[¥ Use port 80 and 443 as alternatives for incoming connections

s

Skype Components: Host Cache “.

 |P address and port number of online Skype
nodes (SNs)

» Maximum size: 200 entries

 Liang, Kumar and Ross. Understanding KaZaA
» 200 entries for ordinary nodes (ON)

» Login server IP address and port number

* HC Windows location
C:\Documents and Settings\All Users\Application Data\Skype

46

Experimental Setup Used in Study i‘.

* We have NOT reverse engineered Skype executable
but it can be done (Biondi and Desclaux)

e Skype version: Linux v1.2, Windows v1.4.0.84

* Experiments performed between June-July and
Nov-Dec 2005
e Tools Used
» Ethereal (for packet capture)
» NetPeeker (for tuning per process bandwidth)
e NCH Tone generator (for generating tones of various
frequencies)
e APIMonitor (for monitoring the system calls)
e LD_PRELOAD: Linux shared library and system call
interception
« Skype fails to run with Itrace and strace

47

Skype Functions “

o Startup

e Login

e User search

 Call establishment

» Media transfer

* Keep-alive

e NAT and firewall traversal
» Conferencing

48

Skype Functions: LOGIN n

e Public, NAT
« Establishes a TCP connection with the SN
« Keep connection alive by sending refresh message every 2 min.
¢ Authenticates with the login server
« Announces arrival on the network (controlled flooding)
¢ Determines NAT type
e Firewall
e Establishes a TCP connection with the SN
e Authenticates with the login server

49

Skype Functions: USER SEARCH “,

e From the Skype website

¢ Guaranteed to find a user it exists and logged in the last 72
hours

» Search results are cached at intermediate nodes
e Unable to trace messages beyond SN
* Cannot force a node to become a SN

¢ Host cache is used for connection establishment and not for
SN selection

« User does not exist. How does search terminate?

* Skype contacts login server for failed searches
* SN searches for a user behind UDP-restricted firewall
» Same wildcard (sal*) search query from two different

machines initiated at the same time gives different

results
50

Skype Functions: CALL
ESTABLISHMENT “‘

Call signaling always carried over TCP and goes e2e
Calls to non buddies=search+call

Initial exchange checks for blocked users
Public-public call

» Caller SC establishes a TCP connection with callee SC
Public-NAT

» Caller SC is behind port-restricted NAT
« Different solutions based on the nature of the NAT

» Caller---->Skype node (SN?) ----> Callee

e TCP connection established between caller, callee, and more than
one Skype nodes

Firewall-firewall call
¢ Same as public-NAT but no in-UDP packets

51

Skype Functions: MEDIA “

TRANSFER

No silence suppression

Silence packets are used to

 play background noise at the peer

¢ maintain UDP NAT binding

 avoid drop in the TCP congestion window
Putting a call on hold

e 1 packet/3 seconds to call-peer or Skype node
» same reasons as above

Codec frequency range

e 50-8,000 Hz (total bw of 3 kilobytes/s)
Reasonable call quality at (4-5 kilobytes/s)

52

Skype Super Nodes i‘

Skype super node: A node with which a Skype
establishes a TCP connection at login

8,153 successful login attempts over four days
35% hostnames had a .edu suffix

e 102 universities

894 unique super nodes

Unique SN IP distribution:

e US 83.7%, Asia 8.9%, Europe 7.1%

Top 20 nodes received 43.8% of the total
connections

Top 100 nodes: 70.5%

53

10

Summary

 Selfish application
e Uses best CPU and bandwidth resources
« Evades blocking

«

* Change application priority to ‘High’ after call establishment
* No application configuration to prevent machine from becoming a

super node. Possible by limiting per-process bandwidth
» Code obfuscation, runtime decryption

» Login server and super nodes, not strictly peer-to-peer

* STUN and TURN equivalent functionality
» Combination of hashing and controlled flooding

* Multiple paths for ‘in-time’ switching in case of failures

» Search falls back to login server

54

11

