
1

15-441 Computer Networking

Lecture 16: Delivering Content
Web and Peer-Peer

Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

15-441
15-641

Overview

• Web
• Protocol interactions
• Caching
• Cookies

• Consistent hashing
• Peer-to-peer
• CDN
• Video

2

3

Web history

• 1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.
• Describes the idea of a distributed hypertext system.
• A “memex” that mimics the “web of trails” in our minds.

• 1989: Tim Berners-Lee (CERN) writes internal proposal
to develop a distributed hypertext system
• Connects “a web of notes with links”.
• Intended to help CERN physicists in large projects share and

manage information

• 1990: TBL writes graphical browser for Next machines
• 1992-1994: NCSA/Mosaic/Netscape browser release

4

Internet Traffic History

0.001

0.01

0.1

1

10

100

1000

10000

100000

PB
yt

e/
m

on
th

Year

All

Fixed

Mobile

2

5

Typical Workload (Web Pages)

• Multiple (typically small) objects per page
• File sizes

• Heavy-tailed
• Pareto distribution for tail
• Lognormal for body of distribution

• Embedded references
• Number of embedded objects also Pareto

Pr(X>x) = (x/xm)-k

• This plays havoc with performance. Why?
• Solutions?

•Lots of small objects
means & TCP
• 3-way handshake
• Lots of slow starts
• Extra connection state

HTTP 0.9/1.0

• One request/response per TCP connection
• Simple to implement

• Short transfers are very hard on TCP
• Multiple connection setups  three-way handshake

each time
• Several extra round trips added to transfer

• Many slow starts – low throughput because of small
window
• Never leave slow start for short transfers

• Loss recovery is poor when windows are small
• Lots of extra connections

• Increases server state/processing

6

Single Transfer Example

Client Server
SYN

SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server reads from
disk

FIN

Server reads from
disk

Client opens TCP
connection
Client sends HTTP request
for HTML

Client parses HTML
Client opens TCP
connection

Client sends HTTP request
for image

Image begins to arrive

7

Improving Performance

• Multiple concurrent connections (Netscape)
• Benefits are mixed: more state, timeouts, …

• Multiplex multiple transfers onto one TCP connection
(HTTP 1.1)
• Also allow pipelined transfers, i.e., multiple outstanding requests

• How to identify requests/responses
• Delimiter  Server must examine response for delimiter string
• Content-length and delimiter  Must know size of transfer in

advance
• Block-based transmission  send in multiple length delimited

blocks
• Store-and-forward  wait for entire response and then use

content-length
• Solution use existing methods and close connection otherwise

8

3

Persistent Connection Solution

Client

Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from
disk

Client sends HTTP request
for HTML

Client parses HTML
Client sends HTTP request
for image

Image begins to arrive

DAT
Server reads from
disk

DAT

9

Other Problems

• Serialized transmission but first bytes may be most useful
• May be better to get the 1st 1/4 of all images than one

complete image (e.g., progressive JPEG)
• Can “packetize” transfer over TCP, e.g., range requests

• Application specific solution to transport protocol
problems. :(
• Could fix TCP so it works well with multiple

simultaneous connections
• More difficult to deploy

• Persistent connections can significantly increase state on
the server
• Allow server to close HTTP session
• Client can no longer send requests

10

11

Web Proxy Caches

• User configures browser: Web
accesses via cache

• Browser sends all HTTP
requests to cache
• Object in cache: cache

returns object
• Else cache requests object

from origin server, then
returns object to client

client

Proxy
server

client
origin
server

origin
server

12

No Caching Example (1)

Assumptions
• Average object size = 100,000 bits
• Avg. request rate from institution’s

browser to origin servers = 15/sec
• Delay from institutional router to

any origin server and back to router
= 2 sec

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 100%
• Total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

4

13

No Caching Example (2)

Possible solution
• Increase bandwidth of access link

to, say, 10 Mbps
• Often a costly upgrade

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 15%
• Total delay = Internet delay + access

delay + LAN delay
= 2 sec + msecs + msecs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

14

With Caching Example (3)

Install cache
• Suppose hit rate is .4
Consequence
• 40% requests will be satisfied almost

immediately (say 10 msec)
• 60% requests satisfied by origin server
• Utilization of access link reduced to 60%,

resulting in negligible delays
• Weighted average of delays

= .6*2 sec + .4*10msecs < 1.3 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

15

HTTP Caching

• Clients often cache documents
• Challenge: update of documents
• If-Modified-Since requests to check

• HTTP 0.9/1.0 used just date
• HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well
• When/how often should the original be checked for

changes?
• Check every time?
• Check each session? Day? Etc?
• Use Expires header

• If no Expires, often use Last-Modified as estimate

16

Problems

• Fraction of HTTP objects that are cacheable is dropping
• Why?
• Major exception?

• This problem will not go away
• Dynamic data  stock prices, scores, web cams
• CGI scripts  results based on passed parameters

• Other less obvious examples
• SSL  encrypted data is not cacheable

• Most web clients don’t handle mixed pages well many generic
objects transferred with SSL

• Cookies  results may be based on past data
• Hit metering  owner wants to measure # of hits for revenue, etc.

• What will be the end result?

5

Cookies: Keeping “state”

Many major Web sites use
cookies

Four components:
1) Cookie header line in the

HTTP response message
2) Cookie header line in HTTP

request message
3) Cookie file kept on user’s

host and managed by user’s
browser

4) Back-end database at Web
site

Example:
• Susan accesses Internet

always from the same PC
• She visits a specific e-

commerce site for the first time
• When initial HTTP requests

arrives at the site, the site
creates a unique ID and creates
an entry in a backend database
for that ID

17

Cookies: Keeping “State”

client Amazon server
usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

Cookie file
amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file
amazon: 1678
ebay: 8734

one week later:

18

Overview

• Web
• Consistent hashing
• Peer-to-peer
• CDN
• Video

19 20

Distributing Load across Servers

• Given document XYZ, we need to choose a
server to use
• E.g., in a data center

• Suppose we use simple hashing: modulo of a
hash of the name of the document

• Number servers from 1…n
• Place document XYZ on server (XYZ mod n)
• What happens when a servers fails? n  n-1

• Same if different people have different measures of n
• Why might this be bad?

6

21

Consistent Hash: Goals

• “view” = subset of all hash buckets that are
candidate locations
• Correspond to a real server

• Desired features
• Load – all hash buckets have a similar number

of objects assigned to them
• Smoothness – little impact on hash bucket

contents when buckets are added/removed
• Spread – small set of hash buckets that may

hold an object regardless of views
22

Consistent Hash – Example

• Monotone  addition of bucket does not cause
movement between existing buckets

• Spread & Load  small set of buckets that lie
near object

• Balance  no bucket is responsible for large
number of objects

• Construction
• Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n.

• Map object to random position on
unit interval

• Hash of object = closest bucket

0

4

8

12
Bucket

14

23

Consistent Hashing: Ring

• Use consistent has to map both keys and nodes to an m-bit identifier
in the same (metric) identifier space
• For example, use SHA-1 hashes
• Node identifier: SHA-1 hash of IP address

• Key identifier: SHA-1 hash of key

• Also need “rule” for assigning keys to nodes
• For example: “closest”, higher, lower, ..

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1

24

Rule: A key is stored at its successor: node with next higher or equal ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent Hashing Example

7

25

Consistent Hashing Properties

• Load balance: all nodes receive roughly the same
number of keys
• For N nodes and K keys, with high probability

• Each node holds at most (1+)K/N keys
• Provided that K is large compared to N

• When server is added, it receives its initial work load from
“neighbors” on the ring
• “Local” operation: no other servers are affected
• Similar property when a server is removed

Finer Grain Load Balancing

• Redirector knows all server IDs
• It can also track approximate “load” for more

precise load balancing
• Need to define load and be able to track it

• To balance load:
• Wi = Hash(URL, ip of si) for all i
• Sort Wi from high to low
• Find first server with low enough load

• Benefits and drawbacks?

26

Consistent Hashing
Used in Many Contexts

• Distribute load across servers in a data center
• The redirector sits in data center

• Finding storage cluster for an object in a CDN
uses centralized knowledge
• Why?
• Can use consistent hashing in the cluster

• Consistent hashing can also be used in a
distributed setting
• P2P systems can use it find files

27

Overview

• Web
• Consistent hashing
• Peer-to-peer

• Motivation
• Architectures
• TOR
• Skype

• CDN
• Video

28

8

29

Scaling Problem

• Millions of clients  server and network meltdown

30

P2P System

• Leverage the resources of client machines (peers)
• Computation, storage, bandwidth

31

Why p2p?

• Harness lots of spare capacity
• 1 Big Fast Server: 1Gbit/s, $10k/month++
• 2,000 cable modems: 1Gbit/s, $??
• 1M end-hosts: Uh, wow.
• Capacity grows with the number of users!

• Build very large-scale, self-managing systems
• Same techniques useful for companies and p2p apps

• E.g., Akamai’s 14,000+ nodes, Google’s 100,000+ nodes
• Many differences to consider

• Servers versus arbitrary nodes
• Hard state (backups!) versus soft state (caches)
• Security, fairness, freeloading, ..

32

Common P2P Framework

• Common Primitives:
• Join: how to I begin participating?
• Publish: how do I advertise my file?
• Search: how to I find a file?
• Fetch: how to I retrieve a file?

• Search tends to be the most challenging:
• Needles vs. Haystacks

• Searching for top 40, or an obscure punk track from 1981 that
nobody ever heard of?

• Search expressiveness: Whole word? Regular
expressions? File names? Attributes? Whole-text? …
• E.g., p2p gnutella or p2p google?

9

33

Searching

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

34

What is (was) out there?

Central Flood Super-
node
flood

Route

Whole
File

Napster Gnutella Freenet

Chunk
Based

BitTorrent KaZaA
(bytes,
not
chunks)

DHTs
eDonkey
2000

35

The Solution Space

• Centralized Database
• Napster

• Query Flooding
• Gnutella

• Intelligent Query Flooding
• KaZaA

• Swarming
• BitTorrent

• Structured Overlay Routing
• Distributed Hash Tables

36

Napster: Centralized Database

• Operational from 1999 to 2001
• Peaked at 1.5 million simultaneous users

• Join: on startup, client contacts central
server

• Publish: reports list of files to central server
• Search: query the server => return someone

that stores the requested file
• Fetch: get the file directly from peer

10

37

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

38

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

39

Napster: Discussion

• Pros:
• Simple
• Search scope is O(1)
• Controllable (pro or con?)

• Cons:
• Server maintains O(N) State
• Server does all processing
• Single point of failure

40

Next Topic...

• Centralized Database
• Napster

• Query Flooding
• Gnutella

• Intelligent Query Flooding
• KaZaA

• Swarming
• BitTorrent

• Structured Overlay Routing
• Distributed Hash Tables

11

41

Gnutella: Flooding

• Released in 2000 and improved over time; still alive
• Many clients available, very popular

• Join: on startup, client contacts a few other nodes;
these become its “neighbors”

• Publish: no need
• Search: ask neighbors, who ask their neighbors, and

so on... when/if found, reply to sender.
• TTL limits propagation�

• Fetch: get the file directly from peer

42

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

43

Gnutella: Discussion

• Pros:
• Fully de-centralized
• Search cost distributed
• Processing @ each node permits powerful search

semantics
• Cons:

• Search scope is O(N)
• Search time is O(???)
• Nodes leave often, network unstable

• TTL-limited search works well for haystacks.
• For scalability, does NOT search every node.
• May have to re-issue query later

44

KaZaA: Query Flooding

• First released in 2001 and still used today
• Also very popular

• Join: on startup, client contacts a “supernode” ... may at
some point become one itself

• Publish: send list of files to supernode
• Search: send query to supernode, supernodes flood query

amongst themselves.
• Fetch: get the file directly from peer(s); can fetch

simultaneously from multiple peers

12

45

KaZaA: Network Design

“Super Nodes”

46

KaZaA: File Insert

I have X!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

47

KaZaA: File Search

Where is file A?

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

48

KaZaA: Fetching

• More than one node may have requested file...
• How to tell?

• Must be able to distinguish identical files
• Not necessarily same filename
• Same filename not necessarily same file...

• Use Hash of file
• KaZaA uses UUHash: fast, but not secure
• Alternatives: MD5, SHA-1

• How to fetch?
• Get bytes [0..1000] from A, [1001...2000] from B
• Alternative: Erasure Codes

13

49

KaZaA: Discussion

• Pros:
• Tries to take into account node heterogeneity:

• Bandwidth
• Host Computational Resources
• Host Availability (?)

• Rumored to take into account network locality

• Cons:
• Mechanisms easy to circumvent
• Still no real guarantees on search scope or search time

• Similar behavior to gnutella, but better.

50

Stability and Superpeers

• Why superpeers?
• Query consolidation

• Many connected nodes may have only a few files
• Propagating a query to a sub-node would take more b/w than

answering it yourself

• Caching effect
• Requires network stability

• Superpeer selection is time-based
• How long you have been on is a good predictor of how

long you will be around

51

The Solution Space

• Centralized Database
• Napster

• Query Flooding
• Gnutella

• Intelligent Query Flooding
• KaZaA

• Swarming
• BitTorrent

• Structured Overlay Routing
• Distributed Hash Tables

• More on Thursday …

66

Napster: History

• 1999: Sean Fanning launches Napster
• Peaked at 1.5 million simultaneous users
• Jul 2001: Napster shuts down

14

67

Gnutella: History

• In 2000, J. Frankel and T. Pepper from Nullsoft
released Gnutella

• Soon many other clients: Bearshare, Morpheus,
LimeWire, etc.

• In 2001, many protocol enhancements including
“ultrapeers”

68

KaZaA: History

• In 2001, KaZaA created by Dutch company Kazaa
BV

• Single network called FastTrack used by other
clients as well: Morpheus, giFT, etc.

• Eventually protocol changed so other clients could
no longer talk to it

• Very popular file sharing network today with >10
million users (number varies)

