15-441 :
“. 15641 Computer Networking

Lecture 16: Delivering Content
Web and Peer-Peer
Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

Overview

N

« Web
 Protocol interactions
e Caching
e Cookies

» Consistent hashing

* Peer-to-peer

« CDN

* Video

Web history “

e 1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.
« Describes the idea of a distributed hypertext system.
¢ A“memex” that mimics the “web of trails” in our minds.
¢ 1989: Tim Berners-Lee (CERN) writes internal proposal
to develop a distributed hypertext system
« Connects “a web of notes with links”.
¢ Intended to help CERN physicists in large projects share and
manage information
e 1990: TBL writes graphical browser for Next machines

» 1992-1994: NCSA/Mosaic/Netscape browser release

Internet Traffic History

"N

100000

10000 Al

——Fixed
1000

Mobile

100

10

PByte/month

1

Year

Typical Workload (Web Pages) O\ Y

» Multiple (typically small) objects per page

* File sizes «Lots of small objects
* Heavy-tailed means & TCP
« Pareto distribution for tail « 3-way handshake
« Lognormal for body of distribution « Lots of slow starts
« Embedded references « Extra connection state
» Number of embedded objects also Pareto
Pr(X>X) = (x/X,)™
* This plays havoc with performance. Why?
* Solutions?

HTTP 0.9/1.0 m

» One request/response per TCP connection
¢ Simple to implement
e Short transfers are very hard on TCP
¢ Multiple connection setups - three-way handshake
each time
¢ Several extra round trips added to transfer
¢ Many slow starts — low throughput because of small
window
« Never leave slow start for short transfers
e Loss recovery is poor when windows are small
 Lots of extra connections
* Increases server state/processing

Single Transfer Example “

Client Server
ORTF
Client opens TCP
connection 1RTF
Client sends HTTP request Server reads from
for HTML ldisk
2RTT
Client parses HTML
Client opens TCP
connection
3RTT
Client sends HTTP request
for image lS_erver reads from
ACK disk
4RTT
DAT

Image begins to arrive

Improving Performance n

e Multiple concurrent connections (Netscape)
» Benefits are mixed: more state, timeouts, ...
e Multiplex multiple transfers onto one TCP connection
(HTTP 1.1)
¢ Also allow pipelined transfers, i.e., multiple outstanding requests
« How to identify requests/responses
» Delimiter > Server must examine response for delimiter string

¢ Content-length and delimiter - Must know size of transfer in
advance

» Block-based transmission - send in multiple length delimited
blocks

» Store-and-forward > wait for entire response and then use
content-length

» Solution = use existing methods and close connection otherwise

Persistent Connection Solution

«

ORTT
Client sends HTTP request
for HTML

1RTT

Client parses HTML

Client sends HTTP request
for image

2RTT

Image begins to arrive

Server

lServer reads from
par | disk

lServer reads from
pat | disk

Other Problems i‘,

 Serialized transmission but first bytes may be most useful

e May be better to get the 1st 1/4 of all images than one
complete image (e.g., progressive JPEG)

e Can “packetize” transfer over TCP, e.g., range requests
» Application specific solution to transport protocol
problems. :(
e Could fix TCP so it works well with multiple
simultaneous connections
» More difficult to deploy
» Persistent connections can significantly increase state on
the server
» Allow server to close HTTP session
¢ Client can no longer send requests

Web Proxy Caches

L\

« User configures browser: Web
accesses via cache
« Browser sends all HTTP
requests to cache
* Objectin cache: cache
returns object
« Else cache requests object|
from origin server, then
returns object to client

client

origin
server

origin
server

No Caching Example (1) i‘

Assumptions

« Average object size = 100,000 bits @ @ origin

* Avg. request rate from institution’s T @ servers
browser to origin servers = 15/sec @\ il

< Delay from institutional router to Internet _@
any origin server and back to router
=2sec

Consequences

< Utilization on LAN = 15%

< Utilization on access link = 100%

« Totaldelay = Internetdelay + access institutional
delay + LAN delay network

= 2 sec + minutes + milliseconds

1.5 Mbps
access link

10 Mbps LAN

12

No Caching Example (2) i‘.

Possible solution
e Increase bandwidth of access link origin

to, say, 10 Mbps @ servers
« Often a costly upgrade @\

public

Internet _@
Consequences
« Utilization on LAN = 15%
« Utilization on access link = 15%

« Total delay = Internetdelay + access
delay + LAN delay

= 2 sec + msecs + msecs institutional
network

10 Mbps
access link

10 Mbps LAN

13

With Caching Example (3) “.

Install cache origin
* Suppose hit rate is .4 9
servers
Consequence @
* 40% requests will be satisfied almost public
immediately (say 10 msec) Internet -@

* 60% requests satisfied by origin server
« Utilization of access link reduced to 60%,
resulting in negligible delays

« Weighted average of delays 1.5 Mbps
access link

= .6*2 sec + .4*10msecs < 1.3 secs
institutional

feluok 10 Mbps LAN

institutional
cache

HTTP Caching “

 Clients often cache documents
¢ Challenge: update of documents

« If-Modified-Since requests to check
e HTTP 0.9/1.0 used just date

« HTTP 1.1 has an opaque “entity tag” (could be a file signature,
etc.) as well

» When/how often should the original be checked for
changes?
e Check every time?
» Check each session? Day? Etc?

e Use Expires header
« If no Expires, often use Last-Modified as estimate

15

Problems i‘

» Fraction of HTTP objects that are cacheable is dropping
e Why?
* Major exception?
e This problem will not go away
» Dynamic data - stock prices, scores, web cams
» CGil scripts - results based on passed parameters

» Other less obvious examples
* SSL - encrypted data is not cacheable

* Most web clients don’t handle mixed pages well >many generic
objects transferred with SSL

» Cookies - results may be based on past data
¢ Hit metering > owner wants to measure # of hits for revenue, etc.

* What will be the end result?

16

Cookies: Keeping “state” i‘.

Many major Web sites use
cookies

Four components:
1) Cookie header line in the
HTTP response message
2) Cookie header line in HTTP
request message
3) Cookie file kept on user’s
host and managed by user’s

Example:
* Susan accesses Internet
always from the same PC
« She visits a specific e-
commerce site for the first time
* When initial HTTP requests
arrives at the site, the site

Cookies: Keeping “State” “.

client Amazon server
Cookie file ‘] usual http request msg server e,,/a,
— % A
usual http response + creates ID e’%e’”(,a
ebay: 8734 “1 Set-cookie: 1678 1678 for user &‘%0‘7
Cookiefile/ _ I'qal http request msg i @
amazon: 1678 cookie: 1678 cookie-

ebay: 8734 = specific

J usual http response msg (action

one week later:

Cookie file/ — usual http request msg

S cookie-
amazon: 1678 cookie: 1678 [specific
ebay: 8734 J usual http response msg action

browser creates a unique ID and creates
4) Back-end database at Web an entry in a backend database
site for that ID
17
Overview ‘\

* Web

» Consistent hashing
» Peer-to-peer

+ CDN

* Video

19

Distributing Load across Servers i‘

¢ Given document XYZ, we need to choose a
server to use

* E.g., in a data center

» Suppose we use simple hashing: modulo of a
hash of the name of the document

¢ Number servers from 1...n
» Place document XYZ on server (XYZ mod n)

» What happens when a servers fails? n > n-1
e Same if different people have different measures of n

« Why might this be bad?

20

Consistent Hash: Goals “,

* “view" = subset of all hash buckets that are
candidate locations

e Correspond to a real server
» Desired features

* Load — all hash buckets have a similar number
of objects assigned to them

» Smoothness - little impact on hash bucket
contents when buckets are added/removed

e Spread — small set of hash buckets that may
hold an object regardless of views

21

Consistent Hash — Example i‘,

» Construction

» Assign each of C hash buckets to 14
random points on mod 2" circle,
where, hash key size = n.

» Map object to random position on
unit interval

» Hash of object = closest bucket
» Monotone - addition of bucket does not cause
movement between existing buckets
e Spread & Load > small set of buckets that lie
near object

e Balance - no bucket is responsible for large
number of objects

22

Consistent Hashing: Ring “

* Use consistent has to map both and nodes to an m-bit identifier
in the same (metric) identifier space

» For example, use SHA-1 hashes
» Node identifier: SHA-1 hash of IP address

IP=198.10.10.17 —SHA-l , |D=123

» Key identifier: SHA-1 hash of key
Key="LetltBe” —SHAL . |D=60

¢ Also need “rule” for assigning keys to nodes
* For example: “closest”, higher, lower, ..

23

Consistent Hashing Example n

Rule: A key is stored at its successor: node with next higher or equal 1D

1P=198.10.10.1" 0 K5

K101

K20

Circular 7-bit

ID space N32

- _— Key="LetltBe”

24

Consistent Hashing Properties i‘,

* Load balance: all nodes receive roughly the same
number of keys

» For N nodes and K keys, with high probability
» Each node holds at most (1+¢)K/N keys
» Provided that K is large compared to N

* When server is added, it receives its initial work load from
“neighbors” on the ring

e “Local” operation: no other servers are affected
e Similar property when a server is removed

25

Finer Grain Load Balancing i‘

Redirector knows all server IDs

It can also track approximate “load” for more
precise load balancing

* Need to define load and be able to track it
To balance load:

» W, = Hash(URL, ip of s)) for all i

» Sort W, from high to low

* Find first server with low enough load
Benefits and drawbacks?

26

Consistent Hashing ‘
Used in Many Contexts ‘

« Distribute load across servers in a data center
* The redirector sits in data center

» Finding storage cluster for an object in a CDN
uses centralized knowledge

e Why?
e Can use consistent hashing in the cluster

» Consistent hashing can also be used in a
distributed setting

* P2P systems can use it find files

27

Overview n

 Web
» Consistent hashing
» Peer-to-peer
e Motivation
 Architectures
« TOR
e Skype
e CDN
e Video

28

Scaling Problem i‘-

» Millions of clients = server and network meltdown

29

P2P System “.

e Leverage the resources of client machines (peers)
¢ Computation, storage, bandwidth

30

Why p2p? “

» Harness lots of spare capacity
« 1 Big Fast Server: 1Gbit/s, $10k/month++
» 2,000 cable modems: 1Gbit/s, $??
* 1M end-hosts: Uh, wow.
e Capacity grows with the number of users!
 Build very large-scale, self-managing systems
e Same techniques useful for companies and p2p apps
» E.g., Akamai's 14,000+ nodes, Google’s 100,000+ nodes

« Many differences to consider
 Servers versus arbitrary nodes
» Hard state (backups!) versus soft state (caches)
e Security, fairness, freeloading, ..

31

Common P2P Framework i‘

e Common Primitives:
e Join: how to | begin participating?
e Publish: how do | advertise my file?
e Search: how to | find a file?
e Fetch: how to | retrieve a file?
e Search tends to be the most challenging:

* Needles vs. Haystacks

» Searching for top 40, or an obscure punk track from 1981 that
nobody ever heard of?

e Search expressiveness: Whole word? Regular
expressions? File names? Attributes? Whole-text? ...
* E.g., p2p gnutella or p2p google?

32

«

Searching
L8

L' 8 N,
Nl

Key="title”

Value=MP3 data...

Publisher
2

2 9

2
N3
L8
Client
Lookup(“title™)
N
2

33

What is (was) out there? i‘,

The Solution Space

L\

Centralized Database
* Napster

35

Central |Flood Super- Route

node
flood

Whole Napster |Gnutella Freenet

File

Chunk BitTorrent KazaA DHTs

Based (bytes, |eDonkey
not 2000
chunks)

Napster: Centralized Database i‘

* Operational from 1999 to 2001
e Peaked at 1.5 million simultaneous users

» Join: on startup, client contacts central
server

» Publish: reports list of files to central server

+ Search: query the server => return someone
that stores the requested file

e Fetch: get the file directly from peer

36

Napster: Publish i‘,

‘ \az b

b insert(X, g’/
123.2.21.23))
P .
G355 publish /
[} %3
I have X, Y, and Z! &2 e
123.2.21.23

37

Napster: Search “,

1232018 B 2 S0
: @

search(A)
>

i 123.2.0. 18

=

Where is file A? &5

38

Napster: Discussion “

* Pros:
e Simple
e Search scope is O(1)
e Controllable (pro or con?)
* Cons:
e Server maintains O(N) State
e Server does all processing
* Single point of failure

39

Next Topic... m

e Query Flooding

* Gnutella

40

10

Gnutella: Flooding “.

» Released in 2000 and improved over time; still alive
* Many clients available, very popular

+ Join: on startup, client contacts a few other nodes;
these become its “neighbors”

e Publish: no need

» Search: ask neighbors, who ask their neighbors, and
so on... when/if found, reply to sender.

e TTL limits propagation!!
» Fetch: get the file directly from peer

41

Gnutella: Search i‘,

| have file A.
| have file A. "_" L
2 @& L \\.
@a2! 2
Py @z
&
=2
BEEEED
G2

Where is file A? &5z

42

Gnutella: Discussion “

e Pros:
e Fully de-centralized
e Search cost distributed

» Processing @ each node permits powerful search
semantics

» Cons:
e Search scope is O(N)
e Search time is O(???)
* Nodes leave often, network unstable
e TTL-limited search works well for haystacks.
» For scalability, does NOT search every node.
* May have to re-issue query later

43

KaZaA: Query Flooding n

First released in 2001 and still used today
* Also very popular

« Join: on startup, client contacts a “supernode” ... may at
some point become one itself

e Publish: send list of files to supernode

e Search: send query to supernode, supernodes flood query
amongst themselves.

» Fetch: get the file directly from peer(s); can fetch
simultaneously from multiple peers

44

11

KaZaA: Network Design “,

“Super Nodes”

L}

I Na

45

KaZaA: File Insert i‘,

insert(X,
123.2.21.23)

Publish ‘

I have X! B

B
123.2.21.23

46

KaZaA: File Search “

search(A)
=
123.2.22.50

search(A)
——>
+4123.2.0.18

12399250 ’:

Que%»ﬁeplies

Where is file A? B
e

o

47

KaZaA: Fetching m

e More than one node may have requested file...
e How to tell?
¢ Must be able to distinguish identical files
¢ Not necessarily same filename
¢ Same filename not necessarily same file...
e Use Hash of file
¢ KazZaA uses UUHash: fast, but not secure
* Alternatives: MD5, SHA-1
* How to fetch?
¢ Get bytes [0..1000] from A, [1001...2000] from B
¢ Alternative: Erasure Codes

48

KaZaA: Discussion “,

e Pros:
» Tries to take into account node heterogeneity:
¢ Bandwidth
* Host Computational Resources
* Host Availability (?)
* Rumored to take into account network locality
e Cons:
* Mechanisms easy to circumvent
« Still no real guarantees on search scope or search time

» Similar behavior to gnutella, but better.

49

Stability and Superpeers “.

* Why superpeers?
¢ Query consolidation

* Many connected nodes may have only a few files

» Propagating a query to a sub-node would take more b/w than
answering it yourself

¢ Caching effect
¢ Requires network stability
e Superpeer selection is time-based

* How long you have been on is a good predictor of how
long you will be around

50

The Solution Space “

e Swarming
» BitTorrent

More on Thursday ...

51

Napster: History i‘

» 1999: Sean Fanning launches Napster
» Peaked at 1.5 million simultaneous users
e Jul 2001: Napster shuts down

66

13

Gnutella: History “.

KaZaA: History i‘

* In 2000, J. Frankel and T. Pepper from Nullsoft
released Gnutella

* Soon many other clients: Bearshare, Morpheus,
LimeWire, etc.

* In 2001, many protocol enhancements including
“ultrapeers”

67

In 2001, KaZaA created by Dutch company Kazaa
BV

Single network called FastTrack used by other
clients as well: Morpheus, giFT, etc.

Eventually protocol changed so other clients could
no longer talk to it

Very popular file sharing network today with >10
million users (number varies)

68

14

