Announcements

- Extra office hours – see the web
- Sample midterm on the web
 - The real midterm will be different

Outline

- Circuit switching refresher
- Virtual Circuits - general
 - Why virtual circuits?
 - How virtual circuits? -- tag switching!
- Two modern implementations
 - ATM - teleco-style virtual circuits
 - MPLS - IP-style virtual circuits
- Virtual LANs
 - How do they differ?

Circuit Switching

- Source first establishes a connection (circuit) to the destination.
 - Each router or switch along the way may reserve some bandwidth for the data flow
- Source sends the data over the circuit.
 - No destination address needed - routers know the path
 - The connection is torn down.
- Example: traditional telephone network.
Circuit Switching

- Switch remembers how to forward data
- No addresses!
- Many options
 - Between specific wires (circuit = wire)
 - Between timeslots (TDMA on each wire)
 - Between frequencies (FDMA on each wire)

Circuit Versus Packet Switching

- Fast switches can be built relatively inexpensively
- Inefficient for bursty data
- Predictable performance (e.g. hard QoS)
- Requires circuit establishment before communication

- Switch design is more complex and expensive
- Allows statistical multiplexing
- Difficult to provide QoS guarantees
- Data can be sent without signaling delay and overhead

Can we get the benefits of both?

Virtual Circuits

- Each wire carries many "virtual" circuits.
- Forwarding based on virtual circuit (VC) identifier
 - IP header: src, dst, etc.
 - Virtual circuit header: just "VC"
 - A path through the network is set up when the VC is established
 - Can use statistical multiplexing for efficiency
- Can support wide range of quality of service.
 - No guarantees: best effort service
 - Weak guarantees: delay < 300 msec, ...
 - Strong guarantees: e.g. equivalent of physical circuit

Virtual Circuits Versus Packet Switching

- Many similarities:
 - Forwarding based on "address" (VCID or dest address)
 - Statistical multiplexing for efficiency
 - Must have buffers space on switches
- Virtual circuit switching:
 - Uses short connection identifiers to forward packets
 - Switches know about the connections so they can more easily implement features such as quality of service
 - Switches are stateful: VC state cannot be lost
- Packet switching:
 - Use full destination addresses for forwarding packets
 - Can send data right away: no need to establish a connection first
 - Switches are stateless: easier to recover from failures
 - Adding QoS is hard
Virtual Circuit Forwarding

- Address used for look up is a virtual circuit identifier (VC id)
- Forwarding table entries are filled in during signaling
- VC id is often shorter than destination address

VC1 = 1
VC2 = 2
VC3 = 3
VC4 = 4
VC5 = ?

How to Pick a VC Id?

- When B establishes green virtual circuit, how does it know what VC ids are available?
- Even worse: every VC id may already be used on a link along the path to the destination
- Solution: VC id swapping

VC id Swapping

- Look up is based on VC id in header + incoming port number
- Forwarding table specifies outgoing port and new VC id
- VC id conflicts can be resolved locally during signaling
Connections and Signaling

- Permanent vs. switched virtual connections (PVC/SVC)
 - static vs. dynamic. PVCs last "a long time"
 - E.g., connect two bank locations with a PVC
 - PVCs administratively configured (but not "manually")
 - SVCs dynamically set up on a "per-call" basis
- Topology
 - point to point, point to multipoint, multipoint to multipoint
- Challenges: How to configure these things?
 - What VCI to use?
 - Setting up the path

SVC Connection Setup

Virtual Circuits In Practice

- Asynchronous Transfer Mode - ATM: Teleco approach
 - Kitchen sink. Based on voice, support file transfer, video, etc., etc.
 - Intended as IP replacement. That didn't happen. :)
 - Today: rarely used.
- MPLS: The "IP Heads" answer to ATM
 - Stole good ideas from ATM
 - Integrates well with IP
 - Today: Used inside many transit networks to provide traffic engineering, VPN support, simplify core.
- Other networks just run IP.
- Older tech: Frame Relay
 - Only provided PVCs. Used for quasi-dedicated 56k/T1 links between offices, etc. Slower, less flexible than ATM.

Outline

- Circuit switching refresher
- Virtual Circuits - general
 - Why virtual circuits?
 - How virtual circuits? -- tag switching!
- Two modern implementations
 - ATM - teleco-style virtual circuits
 - MPLS - IP-style virtual circuits
- Virtual LANs
 - How do they differ?
ATM History

• Telephone companies supported voice telephony: 4 kHz analog, 64 kbs digital
• They provided lines for data networking
 • ISDN: 64 kbps and faster channels
 • T1 (1.544 Mbps)
 • T3 (44.736 Mbps)
• Wanted to become the primary service provider for data networking services
 • file transfer: bursty, many Mbps peak
 • database access: bursty, low latency
 • Multimedia: synchronized
 • Video: 6 MHz analog, 1.2-200 Mbps digital

Cell Switching

• Small, fixed-size cells
 [Fixed-length data][header]
• Why?
 • Voice only needs small “packets”
 • Efficiency: All packets the same
 • Easier hardware parallelism, implementation
 • Switching efficiency:
 • Lookups are easy -- table index.
 • Result: Very high cell switching rates.
 • Initial ATM was 155Mbit/s.
 • Ethernet was 10Mbit/s at the same time. (!)

ATM Features

• Fixed size cells (53 bytes).
• Virtual circuit technology using hierarchical virtual circuits (VP, VC).
• PHY (physical layer) processing delineates cells by frame structure, cell header error check.
• Support for multiple traffic classes by adaptation layer.
 • E.g. voice channels, data traffic
• Elaborate signaling stack.
 • Backwards compatible with respect to the telephone standards
• Standards defined by ATM Forum.
 • Organization of manufacturers, providers, users

The ATM Cell (UNI)

[Diagram of ATM cell structure]
IP over ATM
Switched VCs

- When sending IP packets over an ATM network, set up a VC to destination.
 - ATM network can be end to end, or just a partial path
 - ATM is just another link layer
- Virtual connections can be cached.
 - After a packet has been sent, the VC is maintained so that later packets can be forwarded immediately
 - VCs eventually times out
- Properties.
 - Overhead of setting up VCs (delay for first packet)
 - Complexity of managing a pool of VCs
 - Flexible bandwidth management
 - Can use ATM QoS support for individual connections (with appropriate signaling support)

ATM Discussion

- Vision: ATM is a replacement for IP.
 - Could carry both traditional telephone traffic (CBR circuits) and other traffic (data, VBR)
 - Simple switching core: forwarding based on VC identifiers
 - Better than IP, since it supports QoS, traffic engineering
- Reality: Traffic engineering benefits were attractive
 - Fast VCI lookup became less critical over time
- But: Complex technology.
 - Signaling software is very complex
 - Technology did not match people’s experience with IP
 - supporting connection-less service model on connection-based technology is painful
 - deploying ATM in LAN is complex (e.g. broadcast)
 - With IP over ATM, a lot of functionality is replicated

MPLS

- Multi-Protocol Label Switching
- Bringing virtual circuit concept into IP
- Driven by multiple forces
 - QoS
 - Traffic engineering
 - High performance forwarding
 - VPN

Layer 3 (IP) header
Layer 2 header
Layer 3 (IP) header
MPLS label
Layer 2 header

Some MPLS slides from H. Zhang

MPLS Vocabulary: LSP

- Label-switched path (LSP)
 - Simplex path through interior network
MPLS Vocabulary: LSR
- Label-switching router (LSR) performs
 - MPLS packet forwarding
 - LSP setup

MPLS Vocabulary: LER
- Label Edge Router (LER)
 - Ingress and egress node of LSP
 - Packet enters and leaves the LSP

MPLS Vocabulary: Transit
- Transit router
 - Zero or more transit routers
 - Swaps MPLS label
 - Sends traffic to next hop in LSP

MPLS Header
- IP packet is encapsulated in MPLS header and sent down LSP
- IP packet is restored at end of LSP by egress router
 - TTL is adjusted, transit LSP routers count towards the TTL
 - MPLS is an optimization – does not affect IP semantics
MPLS Header

- Label
- Class of service
- Stacking bit
 - Remember me?
- Time to live
 - Decrement at each LSR, or
 - Pass through unchanged

Forwarding Equivalence Classes

- FEC = “A subset of packets that are all treated the same way by a router”
- The concept of FECs provides for a great deal of flexibility and scalability
- In conventional routing, a packet is assigned to a FEC at each hop (i.e. L3 look-up), in MPLS it is only done once at the network ingress.

LSPs Driven by Routing

- A LSP is actually part of a tree from every source to that destination (unidirectional).
- Control protocol (e.g. LDP) builds that tree using existing IP forwarding tables to route the control messages.

MPLS Builds on Standard IP

- Destination based forwarding tables as built by OSPF, IS-IS, RIP, etc.
IP Forwarding – Hop-by-Hop Control

Label Switched Path (LSP)

Explicitly Routed - ER-LSP

Explicitly Routed LSP - Example

ER-LSP follows route that source chooses. In other words, the control message to establish the LSP (label request) is source routed.
Protocol Comparison

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Forwarding</th>
<th>Control Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Dest MAC address</td>
<td>Learning</td>
</tr>
<tr>
<td></td>
<td>Exact match</td>
<td>Spanning tree</td>
</tr>
<tr>
<td>IP</td>
<td>Dest IP address</td>
<td>Routing protocol</td>
</tr>
<tr>
<td></td>
<td>Longest prefix match</td>
<td></td>
</tr>
<tr>
<td>TDM</td>
<td>Time slot, exact match</td>
<td>E2E signaling protocol</td>
</tr>
<tr>
<td></td>
<td>Time Slot Exchange (TSE)</td>
<td>Routing protocol</td>
</tr>
<tr>
<td>ATM</td>
<td>Label, exact match</td>
<td>E2E signaling protocol</td>
</tr>
<tr>
<td></td>
<td>Label swapping</td>
<td>Routing protocol</td>
</tr>
<tr>
<td>MPLS</td>
<td>Label, Dest IP Address</td>
<td>Flexible signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routing Protocol</td>
</tr>
</tbody>
</table>

Outline

- Circuit switching refresher
- Virtual Circuits - general
 - Why virtual circuits?
 - How virtual circuits? -- tag switching!
- Two modern implementations
 - ATM - teleco-style virtual circuits
 - MPLS - IP-style virtual circuits
- Virtual LANs
 - How do they differ?

VLAN Introduction

- VLANs logically segment switched LANs (layer 2!) based on organization or function, independent of their physical location in the network
- Devices on a VLAN share their own (private) LAN
- Form their own IP subnet
- Offers many benefits:
 - Performance: limits broadcast messages to the VLAN – improves scalability
 - Security: isolates VLAN – VLANs connected by routers with smarter filtering capabilities
 - Management: manage network topology without changing the physical topology

VLAN Example

- A switch creates a broadcast domain
- VLANs help manage broadcast domains
- VLANs can be defined on port groups, users, or protocols
- LAN switches and network management software provide a mechanism to create VLANs
VLAN Types

- VLANs are implemented by switches.
- VLAN memberships can be controlled by a switch in different ways, based on:
 - Port: incoming ports are tagged with VLAN ID.
 - MAC address: switch has (MAC, VLAN ID) table.
 - Protocol: switch as (protocol, VLAN ID) table.
- The frame headers are encapsulated or modified to insert a VLAN ID.
 - Is inserted by first switch before forwarding packet.
 - Removed by last switch before forwarding to the destination device.

Example: 802.1Q Standard for VLANs over Ethernet

- A 32 bit VLAN header is inserted after the MAC addresses.
- Header consists of:
 - Tag Protocol Identifier (16b): single value that marks frame as a VLAN frame.
 - Control bits (4b): mostly priority.
 - VLAN Identifier (12b): identifies VLAN.

Take Home Points

- Costs/benefits/goals of virtual circuits.
- Cell switching (ATM)
 - Fixed-size pkts: Fast hardware.
 - Packet size picked for low voice jitter. Understand trade-offs.
 - Beware packet shredder effect (drop entire pkt).
- Tag/label swapping - basis for most VCs.
 - Makes label assignment link-local. Understand mechanism.
- MPLS - IP meets virtual circuits (links)
 - Used for VPNs, traffic engineering, reduced core routing table sizes.
 - Management of ISPs at layer 3.
- Virtual LANs – manage LANs in software
 - Simplifies management of edge networks at layer 2.
 - Set up by manager based on organizational structure – no tag swapping.