

- Resulted in inefficiencies, congestion collapse
- The price you pay for being successful!
- Congestion control based on implicit feedback
 - Binary: packet loss = congestion, no packet loss = OK
 - AIMD adaptation by sender motivated by fairness
- Clever and scalable, but ...
 - Routers need to drop packets to slow down sender
 - · Crude, noisy feedback more on this later
- · Can we do better? Explicit feedback?

21

22

- TCP uses delayed ACK: acks every other packet
 - Kind of messy interferes with: congestion control, fast retransmit (no delay), slow start,
- Nagle's algorithm avoids sending many small packets
- Allow only one outstanding small (not full sized) segment that has not yet been acknowledged
- Can be disabled for interactive applications (e.g., telnet)
- Silly window syndrom
 - If receiver advertises small increases in the receive window then the sender may waste time sending lots of small packets
 - Solution: don't do it receiver tries to wait for one MSS
- Unusual circumstances: keep alive, RESET, ...

