
1

15-441 Computer Networking

Lecture 14 – TCP Performance & Future
Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

15-441
15-641

Outline

• TCP status and extensions
• Where are we
• Why we need queues
• Filling in the gaps

• TCP performance model
• Beyond basic TCP

• TCP-friendly
• Further optimizing performance

2

TCP so far

• Reliable byte stream protocol
• Connection establishments and tear down

• Maintain state at end points to optimize performance
• Flow control to avoid flooding receiver

• Based on sliding window to overcome RTT
• Error control to recover from lost packets

• Cover up errors by best effort IP service
• Congestion control to avoid flooding the network

• Protect the network – avoid congestion collapse

3

Error Control Has Evolved

• Original error control based on cumulative ACKs
Go-Back-N
• But only retransmit one packet to avoid wasting

bandwidth
• Added fast retransmit - ~NACK

• Try to avoid expensive timeout on packet loss
• Not effective for bursty errors, small windows

• Selective ACK to avoid timeouts when using large
windows
• Multiple losses per window more common

4

2

Congestion Control also Evolved

• Original TCP did not have congestion control
• Resulted in inefficiencies, congestion collapse
• The price you pay for being successful!

• Congestion control based on implicit feedback
• Binary: packet loss = congestion, no packet loss = OK
• AIMD adaptation by sender – motivated by fairness

• Clever and scalable, but …
• Routers need to drop packets to slow down sender
• Crude, noisy feedback – more on this later

• Can we do better? Explicit feedback?

5

Outline

• TCP status and extensions
• Where are we
• Why we need queues
• Filling in the gaps

• TCP performance model
• Beyond basic TCP

• TCP-friendly
• Further optimizing performance

6

7

TCP Performance

• Can TCP saturate a link?
• Congestion control

• Increase utilization until… link becomes congested
• React by decreasing window by 50%
• Window is proportional to rate * RTT

• Doesn’t this mean that the network oscillates
between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!

8

TCP Congestion Control

Only W packets
may be outstanding

Rule for adjusting W
• If an ACK is received: W ← W+1/W
• If a packet is lost: W ← W/2

Source Dest

maxW

2
maxW

t

Window size

3

9

Single TCP Flow
Router without buffers

Source Dest

t

Window size

• Intuition: think in discrete time slots = RTT
• The router can’t fully utilize the link

• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization

RTT × BW

???

10

Single TCP Flow
Router with large enough buffers for full link utilization

Source Dest

t

Window size

???

RTT × BW

• What is the minimum queue size for full utilization?
• Must make sure that link is always full, even with smallest window

• W/2 > RTT * BW - also W = 2 * RTT * BW = RTT * BW + Qsize
• Therefore, Qsize > RTT * BW

• Delay? Varies between RTT and 2 * RTT

11

Summary Buffered Link

t

W

Minimum window
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold
• Buffer absorbs changes in window size

• I.e. when window is larger, buffering increases RTT
• Buffer Size = Height of TCP Sawtooth

• This is the origin of the rule-of-thumb
• Routers queues play critical role, not just to deal with burstiness of

traffic, but also to allow TCP to fully utilize bottleneck links
But, at what cost!?

Buffer

Outline

• TCP status and extensions
• Where are we
• Why we need queues
• Filling in the gaps

• TCP performance model
• Beyond basic TCP

• TCP-friendly
• Further optimizing performance

12

4

How Was TCP Able to Evolve

• Change endpoint behavior only
• Fast retransmit, congestion control (implicit feedback)

• Use options to add information to the header
• SACK – awkward but worth it; affects end point only
• Example: window scaling
• SYN cookies
• Timestamp option

• Change the header!
• Example: Explicit Congestion Notification

13 14

High Throughput Requires
Large Windows

• Delay-bandwidth product for 100ms delay
• 1.5Mbps: 18KB
• 10Mbps: 122KB
• 45Mbps: 549KB
• 100Mbps: 1.2MB
• 622Mbps: 7.4MB
• 1.2Gbps: 14.8MB

• Why is this a problem?
• 10Mbps > max 16bit window

• Scaling factor on advertised window
• Specifies how many bits window must be shifted to the left
• Scaling factor exchanged during connection setup

15

Window Scaling:
Example Use of Options
• “Large window” option (RFC

1323)
• Negotiated by the hosts during

connection establishment
• Option 3 specifies the number

of bits by which to shift the
value in the 16 bit window field

• Independently set for the two
transmit directions

• The scaling factor specifies bit
shift of the window field in the
TCP header
• Scaling value of 2 translates

into a factor of 4
• Old TCP implementations will

simply ignore the option
• Definition of an option

TCP syn

SW? 3

TCP syn,ack

SW yes 3
SW? 2

TCP ack

SW yes 2

16

Protection From Wraparound
Timestamp option

• Wraparound time vs. Link speed
• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds
• 1.2Gbps: 28 seconds

• Why is this a problem?
• 55seconds < MSL!

• Use timestamp to distinguish sequence number
wraparound

5

TCP Performance Issues

• Consistently full queues can degrade TCP
performance.
• Can lock out some sessions
• Increased queueing delay
• Lots of ongoing work on reducing buffer sizes

• Detection of congestion requires a packet
loss – seem undesirable

• Bursts of packet losses can synchronize TCP
sessions
• All (many) sessions cut their window at the same

time, they ramp up at the same time, …
• Can lead to underutilization of the link

• Can we do better?

Random Early Detection
(RED)

• Start randomly dropping packets
before queue is full.

• Some flows will observe a single
packet loss and slow down,
hopefully avoiding queue overflow

• High bandwidth users are more likely
to have a packet dropped than low
bandwidth users

• Queue can still accommodate bursts
of packets

• Improves overall network
performance by avoiding that
queues stay full.

• Congestion avoidance
• How do you set the thresholds?

Averaged
Queue size

P

0

1

Explicit Congestion Notification
(ECN)

• The goal is to provide explicit
congestion notification to
senders
• Complements the implicit feedback

through packet drops
• Bits 6-7 of the TOS bit form the

ECN field
• The ECN-Capable Transport (ECT)

bit is set by the sender to indicate
that the end-points are ECN-capable

• The Congestion Experience (CE) bit
is set by the router to signal
congestion

• Reinterpreting bits in header a major
obstacle to deployment!!!

• ECN is received by receiver,
who must forward ECN info to
the sender – how?

V/HL TOS Length
ID Flags/Offset

TTL Prot. H. Checksum
Source IP address

Destination IP address
Options..

DSCP ECT
/CE

ECN in TCP

• Receiver signals congestion to
the sender by setting the ECN-
Echo flag in the TCP header.
• Unused bit of the TCP header
• Handles asymmetric routes
• ECN-Echo flag also used to

negotiate ECN use

• RED and ECN compliment
each other
• RED sets ECN bit – no loss!

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
D. Checksum Urgent Pointer

Options..

HL ECE
/CWR Flags

IP

TCP

6

And Now for the Really Messy Bits

• TCP uses delayed ACK: acks every other packet
• Kind of messy interferes with: congestion control, fast retransmit

(no delay), slow start, ….

• Nagle’s algorithm avoids sending many small packets
• Allow only one outstanding small (not full sized) segment that has

not yet been acknowledged
• Can be disabled for interactive applications (e.g., telnet)

• Silly window syndrom
• If receiver advertises small increases in the receive window then

the sender may waste time sending lots of small packets
• Solution: don’t do it – receiver tries to wait for one MSS

• Unusual circumstances: keep alive, RESET, …

21

Outline

• TCP status and extensions
• Where are we
• Why we need queues
• Filling in the gaps

• TCP performance model
• Beyond basic TCP

• TCP-friendly
• Further optimizing performance

22

23

TCP Modeling

• Given the congestion behavior of TCP can we
predict what type of performance we should get?

• What are the important factors
• Loss rate: Affects how often window is reduced
• RTT: Affects increase rate and relates BW to window
• RTO: Affects performance during loss recovery
• MSS: Affects increase rate

24

Overall TCP Behavior

Time

Window

• Let’s concentrate on steady state behavior with no
timeouts and perfect loss recovery

• Packets transferred = area under curve
• It is really a simple geometry problem!

7

25

Transmission Rate

• What is area under curve?
• Window in packets
• Time in RTTs
• A = avg window * time

= ¾ W * T (packets)
• What was bandwidth?

• BW = A / T = ¾ W
• In packets per RTT

• Convert to bytes per second
• BW = ¾ W * MSS / RTT

• What is W?
• Depends on loss rate

Time

W

W/2

Window

T

26

Simple TCP Model

• Some additional assumptions
• Fixed RTT
• No delayed ACKs

• In steady state, TCP loses a packet each time
window reaches W packets
• Window drops to W/2 packets
• Each RTT window increases by 1 packet
W/2 * RTT between packet losses

27

Simple Loss Model

• What was the loss rate?
• Packets transferred = (¾ W/RTT) * (W/2 * RTT) = 3W2/8
• 1 packet lost  loss rate = p = 8/3W2

•

• BW = ¾ * W * MSS / RTT

•

•

3
2 pRTT

MSSBW




p
W

3
8



pp
W

2
3

3
4

3
8



28

Throughput Equation Implication

• BW proportional to 1/RTT?
• Do flows sharing a bottleneck get the same

bandwidth?
• NO!

• TCP is RTT fair
• If flows share a bottleneck and have the same RTTs

then they get same bandwidth
• Otherwise, in inverse proportion to the RTT

8

Throughput Equation Implication 2

• Suppose RTT = 100 ms, MSS = 1.5 KB
• T = 100 Gb/sec
• p=?

• ݌ ൎ 2 ൈ 	10ିଵଶ

• 1 drop every 6 petabits (17 hours).
• So….

29

ܶ ൎ
 ܵܵܯ	1.5
ܴܶܶ	 ݌

30

TCP over High-Speed Networks

Packet loss

Time (RTT)Congestion avoidance

Packet loss Packet loss
cwnd

Slow start

Packet loss

 A TCP connection with 1250-Byte packet size and 100ms RTT is running
over a 10Gbps link (assuming no other connections, and no buffers at
routers)

100,000 10Gbps

50,000 5Gbps

1.4 hours 1.4 hours 1.4 hours

TCP

Source: Rhee, Xu. “Congestion Control on High-Speed Networks”

Outline

• TCP status and extensions
• Where are we
• Why we need queues
• Filling in the gaps

• TCP performance model
• Beyond basic TCP

• TCP-friendly
• Further optimizing performance

31

• Request-response: overhead too high
• Use RPC: response is ACK for request
• What about congestion control?

• Multi-media streaming: timeouts add excessive
delays, reducing “Quality of Experience”
• Typically implement custom transport in the application
• Can either tolerate some losses, use FEC, or use TCP,

but avoid negative impact of timeouts
• Real-time Transport Protocol can help

• Limited scope: packet format, control information

• What about congestion control?

32

Other Transport Protocols

9

33

TCP Friendliness

• What does it mean to be TCP friendly?
• TCP is not going away any time soon

• Although some people are working on it!

• Any new congestion control must compete with TCP flows
• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair share, or it will

never become popular

• How is this quantified/shown?
• Has evolved into evaluating loss/throughput behavior
• If it shows a 1/sqrt(p) then the behavior it is ok
• But is this really true?

Let’s stop for a moment

• What can the network (really) do?
• Enforce

• Maximum aggregate rate & buffer (has to)
• Isolation?
• Fair sharing?

• Inform
• Aggregate limits exceeded (by packet drop)
• Queue lengths (by delay) (or explicitly)
• Degree of congestion?
• Allowed rate?

• What are the end hosts’ options?
34

TCP-Friendly Rate Control (TFRC)

• Goal: “like TCP, but smoother”
• Avoid timeouts and dramatic rate changes

• Idea: calculate allowed rate using the TCP
equation
• Based on measured packet loss rate
• Matches rate that TCP would have achieved

• Maintain smoothed estimate of loss rate, RTT
• Implement rate control through inter-packet time t

35

TCP Vegas

• Is it possible to avoid packet loss by observing the
onset of congestion, i.e. proactive vs. reactive

• Idea: RTT changes with degree of congestion:
• Minimal with empty buffers, longest right before drop

• Delay-based rate control (TCP Vegas)
• Goal: Respond to congestion before buffers are full
• Look at delay is a continuous feedback signal

• Estimate minimum (no-queuing) RTT and RTT
with expected throughput
• Reduce rate when throughput close to expected rate

36

10

TCP (CU)BIC

• Goal is to spend more time at the high end of the
window value range
• Remember: 1.4 hours to reach Wmax on 10 Gbs link?

• Idea: make the additive increase adaptive
• Fast recovery toward Wmax
• Slow change around (expected) Wmax
• Fast search for (higher) Wmax

37 38

Binary Search with Smax and Smin

0

32

64

96

128

160

192

224

256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (RTT)

cw
nd

Linear Search

Binary Search with Smax and Smin

Smin

Smax

Wmax

Wmin

Available Bandwidth

The TCP Reality

• Most file transfers are very small
• TCP never reaches steady state – slow start dominates

• “TCP-fairness” is calculated on a per flow basis
• Many browsers open parallel TCP sessions, oops
• Other ways to cheat: what is your initial window?

• TLS is widely used – adds 1-2 RTT handshake
• Starts after the TCP handshake!

• Motivates the design of new transport protocols
• E.g., Google QUIC layered on top of UDP

• But there are many long flows as well!

39

