‘\. 15-441 Computer Networking

Lecture 12 — Transport Protocols
Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

Outline

N

e Transport introduction
® Error recovery and flow control
e Congestion control

e Transport optimization and futures

Transport Protocols \‘.

e Lowest level end-to-end
protocol.
e Header generated by

sender is interpreted only

by the destination

¢ Routers view transport
header as part of the Transport g g Transport

*——-’ KCmlmiall Datalink
Physical Physical

router

Functionality Split

"N

e Network provides best-effort delivery only

e End-systems must implement many functions

e Demultiplexing
e Error detection] UDP
e Error recovery

¢ In-order delivery

* Message boundaries

¢ Connection abstraction

e Congestion control

TCP

UDP: User Datagram Protocol [rFc 768] “. High-Level TCP Characteristics

* “Nofrills,” “bare bones” Internet * Protocol implemented entirely at the ends

32 bits ——

transport protocol .
. . Source port# | Dest port # e Fate sharing
e Demultiplexing based on ports .
: Length Checksum * Protocol has evolved over time
e Optional checksum))
« One’s complement add (weak) e Nearly impossible to change the header
e That'sit! ¢ Change processing at endpoints
e Sowhy do we need UDP? Application ¢ Use options to add information to the header
* No connections: no delay, state data * These do change sometimes
* Remember DNS? (message) e Backward compatibility is what makes it TCP
¢ No congestion control: can lead to

* Most changes related to:
 Faster networks, efficiency

unpredictable delays
¢ Problem for multimedia, games, ..
e Good starting point for other
transport protocols
¢ Implemented at application level 5

UDP segment format

» Congestion control

L\

Evolution of TCP TCP Through the 1990s

1975 Loa 1994 1996
Nagel's algorithm
Three-way handshake 1987 T/TcP SACK TCP
y to reduce overhead
Raymond Tomlinson . Karn's algorithm (Braden) (Floyd et al)
of small packets; T 1990 Transaction i
In SIGCOMM 75 predicts congestion to better estimate 4.3BSD Reno nsac Selective
collapse round-trip time fast retransmit Acknowledgement
1963 delayed ACK’s
BSD Unix 4.2 1986 1988 1993 1994 1996 1996
1974 supports TCP/IP Congestion Van Jacobson's TCP Vegas ECN Hoe FACK TCP
TCP described by collapse algorithms (Brakmo et al) (Floyd) NewReno startup (Mathis et al)
Vint Cerf and Bob Kahn observed congestion avoidance delay-based Explicit and loss recovery extension to SACK
In IEEE Trans Comm 1982 and congestion control congestion avoidance - Congestion
TCP & IP (most implemented in Notification
RFC 793 & 791 4.3BSD Tahoe)
1 > 1\
1 T T » T T T
1975 1980 1985 1990 1993 1994 1996

TCP Through the 2000s

«

2010

2004 Data Center TCP
NewReno (too many authors)
(Floyd et. al.) ECN, proportional
Partial ACK in window scaling
Fast Recovery 2011
Multi-Path TCP
2007 Barré, Bonaventure
CuBIC TCP over multiple
Rhee, Xu, Ha subflows
Convex-Concave
Response Fn.
T T L] W
2000 2004 2008 2012

TCP and its Header i‘

e The cadillac of
transport protocols

Source port ‘ Destination port

e Demultiplexing Sequence number

e Connections
¢ Sequence numbers

Acknowledgement

Heren‘ o‘ Flags | Advertised window

e Reliable
e Acks, checksum

Checksum Urgent pointer

¢ Flow control Options (variable)

e Window
e Congestion control Data
¢ Nothing?
e Bookkeeping ++

10

Outline

L\

e Transport introduction
* Error recovery and flow control

e Connection establishment

e Review stop-and-wait and friends
e ACK and retransmission strategies
e Making things work (well) in TCP
e Timeouts

e Congestion control
* Transport optimization and futures

11

Sequence Number Space i‘,

e Each byte in byte stream is numbered.
e 32 bit value
e Wraps around

¢ Initial values selected at start up time
e TCP breaks up the byte stream into packets.

¢ Packet size is limited to the Maximum Segment Size
e Each packet has a sequence number.

¢ Indicates where it fits in the byte stream

13fSO 1451350 160150 171550

packet 8 packet 9 packet 10

12

Establishing Connection:
Three-Way handshake

«

e Each side notifies other of
starting sequence number it will
use for sending

e Why not simply chose 0?
¢ Must avoid overlap with earlier

incarnation ACK: SeqC+1
e Security issues SYN: SeqS

SYN: SeqC

e Each side acknowledges other’s
sequence number ACK: SeqS+1

e SYN-ACK: Acknowledge sequence
number + 1

e Can combine second SYN with _
first ACK Client

Server

13

TCP Connection Setup Example i‘

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80:
S 4019802004:4019802004(0) win 65535
<mss 1260,nop,nop,sackOK> (DF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123:
S 3428951569:3428951569(0) ack 4019802005 win 5840
<mss 1460, nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80:
. ack 3428951570 win 65535 (DF)

e Client SYN

e SeqC: Seq. #4019802004, window 65535, max. seg. 1260
e Server SYN-ACK+SYN

¢ Receive: #4019802005 (= SeqC+1)

e SeqS: Seq. #3428951569, window 5840, max. seg. 1460
e Client SYN-ACK

e Receive: #3428951570 (= SeqS+1)

TCP State Diagram: Connection Setup

L\

CLOSED

Active open'SYN
Passive opel Close

LISTEN

SYN_RCVD |

Close/FIN

FIN_WAIT_1

ack oo Close/FIN
FIN_WAIT_2 LAST_ACK
ACK 1 ament lfetmes 4 ACK
FINJACK 9

TIME_WAIT CLOSED

15

Tearing Down Connection i‘

e Either side can initiate tear down
e Send FIN signal A B

* “I'm not going to send any more FIN, SeqA
data”

e Other side can continue sending |ACK, SeqA+1

data ?
¢ Half open connection ACK
e Must continue to acknowledge \
e Acknowledging FIN

FIN, SeqB
¢ Acknowledge last sequence number +
1 ACK, SeqB+1

16

TCP Connection Teardown Example “.

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616:
F 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474:
F 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616:
. ack 1909787690 win 65434 (DF)

e Session
e Echo client on 128.2.222.198, server on 128.2.210.194
e Client FIN
e SeqC: 1489294581
e Server ACK + FIN
o Ack: 1489294582 (= SeqC+1)
* SeqS: 1909787689
e Client ACK

o Ack: 1909787690 (= SeqS+1)
17

TCP State Diagram: Connection i‘

CLOSED
Active operVSYN
Passive opel Close

Close'

LISTEN
SYN/SYN + ACI Send/SYN
SYN_RCVD SYNISYN + ACK SYN_SENT
W SYN + ACKIACK

Close/FIN

FIN_WAIT_1

Close/FIN

FIN_WAIT_2

FIN/ACK

LAST_ACK

ACK Timeout after two JACK
segment lifetimes.

CLOSED

TIME_WAIT

18

Outline “

Transport introduction

Error recovery and flow control
e Connection establishment

e Review stop-and-wait and friends

e ACK and retransmission strategies

e Making things work (well) in TCP

e Timeouts

Congestion control

Transport optimization and futures

19

Review: Stop and Wait i‘.

« ARQ

» Receiver sends
acknowledgement (ACK)
when it receives packet

« Sender waits for ACK and A—Packet
timeouts if it does not o
arrive within some time
period

e Simplest ARQ protocol
* Send a packet, stop and

ACK

___Timeout

Time

Sender Receiver

wait until ACK arrives

20

Problems with Stop and Wait “.

¢ Stop and wait offers provides flow and error control,
but ..
e How do we overcome the limitation of one packet per
roundtrip time: Sliding window.
e Receiver advertises a “window” of buffer space
¢ Sender can fill the window -> fills the “pipe”
e How do we distinguish new and duplicate packets:
Sequence numbers
¢ 1 bit enough for stop and wait
e More bits for larger windows (see datalink lecture)

21

Bandwidth-Delay Product i‘

RTT
Sender >
~
AN \T
\\\\
N\
N\
XD \\\
DX\ A

Receives >
— Time =

Window Size
Roundtrip Time

Max Throughput =

22

Sliding Window “

Sender/Receiver State

Sender Receiver

Max ACK received Next seqnum Next expected Max acceptable

I Sent & Acked |:| Sent Not Acked I Received & Acked D Acceptable Packet

I OK to Send D Not Usable DNOI Usable

& 1L TUT T el g

23

Window Sliding — Common Case i‘,

e On reception of new ACK (i.e. ACK for something that was not
acked earlier)
¢ Increase sequence of max ACK received
¢ Send next packet
e On reception of new in-order data packet (next expected)
¢ Hand packet to application
¢ Send an ACK that acknowledges the paper
¢ Increase sequence of max acceptable packet
e But what do we do if packets are lost or reordered?
e Results in a gap in the sequence of received packets
e Raises two questions
¢ What feedback does receiver give to the sender, and how?
¢ How and when does the sender retransmit packets
24

ACKing Strategies “.

¢ ACKs acknowledge exactly one packet

e Simple solution, but bookkeeping on sender is a bit messy
¢ Must keep per packet state — not too bad

¢ Inefficient: need ACK packet for every data packet
e Cumulative acks acknowledge all packets up to a
specific packet
¢ Maybe not as intuitive, but simple to implement
o Stalls the pipe until lost packet is retransmitted and ACKed
¢ Negative ACKs allow a receiver to ask for a packet that
is (presumed to be) lost
¢ Avoids the delay associated with a timeout

25

Selective Repeat i‘

e Receiver individually acknowledges correctly received
packets

o |If packets out of order, receiver cannot hand data to application
so window does not move forward

e Sender only resends packets for which ACK not received
e Sender timer for individual unACKed packet

e Sender window calculation
e N consecutive seq #s

o Starts with an earliest unacknowledged packet
* Some packets in the window may have been acknowledged

26

Selective Repeat: Sender, Receiver Windows “

send_base nextsegnum alrecidy uscble, not
ack'ed yet sent
(00} LT T TT T W E

whdow sre—4
N

(a) sender view of sequence numbers

out of order
(buffered) but
already ack'ed

ﬂl]l]l]l]ﬂl]l]l] LTI el
yet received

_ window size—4
N

acceptable

rev_base

(b) receiver view of sequence numbers

(within window)

27

Go-Back-N Recovery i‘.

e Receiver sends cumulative ACKs

e When out of order packet - send nothing (wait for source to
timeout)

e Otherwise sends cumulative ACK
e Sender implements Go-Back-N recovery

e Set timer upon transmission of packet

e Retransmit all unacknowledged packets upon timeout
e Performance during loss recovery

¢ No longer have an entire window in transit

e Can have much more clever loss recovery
e Receiver can send cumulative ACK even for out of order packets
e Why?

28

Go-Back-N in Action “,

sender receiver
send pkt0 \‘
rcv pkit
send pktl send ACKO
’ | rcv phtl
T P e send ACK1
send pktd
ity "
(wait) rev pki3, discard
¥ send ACKI
rev ACKO
send pktd
ACK] rcv pkid, discard
;g:d o \ send ACKI1
) rcv pkis, discard
pkt2 timeout / send ACK
send pl(_r? \
send pkt3 rov pkt2, deliver
send Dt-'g send cé‘?ff p
send pkt rcv pktd, deliver .
\ send ACK3 Window
size =4

29

Outline i\

e Transport introduction

® Error recovery and flow control
e Connection establishment
e Review stop-and-wait and friends
e ACK and retransmission strategies
e Making things work (well) in TCP
e Timeouts

e Congestion control
* Transport optimization and futures

30

TCP = Go-Back-N Variant “

e Sliding window with cumulative acks
e Receiver can only return a single “ack” sequence number to the sender.
¢ Acknowledges all bytes with a lower sequence number
¢ Starting point for retransmission
e Duplicate acks sent when out-of-order packet received
e But: sender only retransmits a single packet.
e Reason???
* Only one that it knows is lost
* Network is congested = shouldn’t overload it
e Error control is based on byte sequences, not packets.

¢ Retransmitted packet can be different from the original lost packet —
Why?

31

Window Flow Control: Send Side “,

Packet Sent Packet Received

Dest_Port Dest_Port
Sequence Number
Acknowledgment

g | vinaon”

HL/Flags_—
w Urgent Pointer

App write
| | | |

acknowledged sent to besent outside window

32

Duplicate ACKs (Fast Retransmit) “. Duplicate ACKs (Fast Retransmit) i‘
e What are duplicate acks (dupacks)? H
¢ Repeated acks for the same sequence E
e When can duplicate acks occur? .
® Loss X . . «— Retransmission
e Packet re-ordering Sequence No T ° e®<— plicate Acks
¢ Window update — advertisement of new flow control n .
window E §
¢ Assume re-ordering is infrequent and not of large = o
magnitude . E .
e Receipt of 3 or more duplicate acks is indication of loss S .
¢ Don’t wait for timeout to retransmit packet
e When does this fail? @Acks Time
33 34

Fast Recovery \‘. Fast Recovery i‘,

¢ Each duplicate ack notifies sender that single packet
has cleared network
¢ When < new cwnd packets are outstanding
¢ Allow new packets out with each new duplicate
acknowledgement
e Behavior
e Sender is idle for some time — waiting for % cwnd worth of
dupacks

e Transmits at original rate after wait
e Ack clocking rate is same as before loss

"Eaagg,
%0

Sent for each dupack &
W/2 dupacks arrive

Sequence No

§.

CoooNEEmEEEX
©000000

M Packets
@Acks

Time
36

35

How about Multiple Losses?

«

SACK “

e Basic problem is that cumulative acks provide little
information
e Selective acknowledgement (SACK) essentially adds a
bitmask of packets received
¢ Implemented as a TCP option

e Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)

e When to retransmit?

e Still need to deal with reordering = wait for out of order by
3pkts

38

]
-
L]
i
)'("
= ® Now what? - timeout
14 [
- [e] Q000
Sequence No = o
- (e}
- o
- [e]
- o
- [*]
L] o]
|] [°]
| | (<]
|] o
| | o
| o
m o
M Packets
@Acks Time
37
Selective ACK (SACK) “
]
-
n
k9
n
X O
]
L
W u
[] © oo
Sequence No = o
[] o
|] o
L} o
|] o
[] (<}
L o]
|] [*]
L] o
|] [*]
- <]
] (<]
- o
M Packets
@©ACcks
Time
O “Hole”

39

Outline i‘

e Transport introduction

* Error recovery and flow control
e Connection establishment
e Review stop-and-wait and friends
e ACK and retransmission strategies
e Making things work (well) in TCP
e Timeouts
e Congestion control

* Transport optimization and futures

40

10

Round-trip Time Estimation “,

Wait at least one RTT before retransmitting

¢ Importance of accurate RTT estimators:

e Low RTT estimate
¢ unneeded retransmissions

e High RTT estimate
e poor throughput
RTT estimator must adapt to change in RTT
e But not too fast, or too slow!
Spurious timeouts

e “Conservation of packets” principle — never more than a
window worth of packets in flight

e Most timeouts set using coarse clock, e.g., 500 msec

41

Original TCP Round-trip Estimator i‘

e Round trip times 2
exponentially averaged: ,

e New RTT =« (old RTT) +
(1 - o) (new sample)

e Recommended value for
a:0.8-0.9
e 0.875 for most TCP’s

¢ Retransmit timer setto (b * RTT), where b = 2

» Every time timer expires, RTO exponentially backed-off
« Not good at preventing spurious timeouts

* Why?

42

Jacobson’s Retransmission Timeout “

e Key observation:
e At high loads, round trip variance is high

e Solution:
¢ Base RTO on RTT and standard deviation
e RTO =RTT + 4 * rttvar

e new_rttvar = 3 * dev + (1- B) old_rttvar
¢ Dev = linear deviation

¢ Inappropriately named — actually smoothed linear
deviation

43

Important Lessons i‘.

e Transport service
e UDP - mostly just IP service
e TCP - congestion controlled, reliable, byte stream
e Types of ARQ protocols
e Sliding window for high throughput
e Go-back-n = can keep link utilized (except w/ losses)
e Selective repeat = efficient loss recovery
e TCP uses go-back-n variant
e Avoid unnecessary retransmission ..
e ...and gaps in the flow (fast retransmit/recovery, SACK)

44

11

