Outline

- Routing hierarchy
- Internet structure
- External BGP (E-BGP)
- Internal BGP (I-BGP)

Internet’s Area Hierarchy

- What is an Autonomous System (AS)?
 - A set of routers under a single technical administration, using an *interior gateway protocol (IGP)* and common metrics to route packets within the AS and using an *exterior gateway protocol (EGP)* to route packets to other AS’s
- Each AS assigned unique ID
- AS’s peer at network exchanges
AS Numbers (ASNs)

ASNs are 16 bit values 64512 through 65535 are "private"
- Genuity: 1
- MIT: 3
- CMU: 9
- UC San Diego: 7377
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...
- ...

ASNs represent units of routing policy

A Logical View of the Internet?

- Logical consequence of hierarchy: repeat the intra-domain connectivity at inter-net level
- Based on IP and OSPF style routing protocols
- NOT TRUE!

A Logical View of the Internet

- ASes play different roles in the Internet
- Tier 1 ISP: global, internet wide connectivity
- Tier 2 ISP: regional or country-wide
- Tier 3 ISP: local
- Emergent property:
 - Businesses specialize
 - Business relationships

A More Interesting Example
Policy Impact

- WHY?
 - Consider the economics of the situation
 - Why does an ISP forward packets?
- “Valley-free” routing
 - Number links as (+1, 0, -1) for provider, peer and customer
 - In any path should only see sequence of +1, followed by at most one 0, followed by sequence of -1

Outline

- Routing hierarchy
- Internet structure
- External BGP (E-BGP)
- Internal BGP (I-BGP)

History

- Mid-80s: EGP
 - Reachability protocol (no shortest path)
 - Did not accommodate cycles (tree topology)
 - Evolved when all networks connected to NSF backbone
- Result: BGP introduced as routing protocol
 - Latest version is BGP-4 - supports CIDR
 - Primary objective:
 - Connectivity not performance
 - Respect business relationships
 - Allow for local policies in each AS

Choices

- Link state or distance vector?
 - Constraint: No universal metric – policy decisions
- Problems with distance-vector:
 - Bellman-Ford algorithm may converge slowly
- Problems with link state:
 - Metric used by routers not the same – loops
 - LS database too large – entire Internet
 - May expose policies to other AS's
Solution: Distance Vector with Path

- Each routing update carries the entire path
- Loops are detected as follows:
 - When AS gets route, check if AS already in path
 - If yes, reject route
 - If no, add self and (possibly) advertise route further
- Advantage:
 - Metrics are local - AS chooses path, protocol ensures no loops

Policy-based Routing: AS 1

- Receive reachability destination for destination X
 - Select path to X based on local policies
- Advertise your path to X selectively
 - Use local policies to decide who to advertise to
- Colors are flipped for AS 2

Interconnecting BGP Peers

- BGP uses TCP to connect peers
- Advantages:
 - Simplifies BGP
 - No need for periodic refresh - routes are valid until withdrawn, or the connection is lost
 - Incremental updates
- Disadvantages
 - Congestion control on a routing protocol?
 - Poor interaction during high load

Hop-by-hop Model

- BGP advertises to neighbors only those routes that it uses
 - Consistent with the hop-by-hop Internet paradigm
 - e.g., AS1 cannot tell AS2 to route to other AS’s in a manner different than what AS2 has chosen (need source routing for that)
- BGP enforces policies by
 1. choosing paths from multiple alternatives and
 2. controlling advertisement to other AS’s
Examples of BGP Policies

- A multi-homed AS refuses to act as transit
 - Limit path advertisement
- A multi-homed AS can become transit for some AS’s
 - Only advertise paths to some AS’s
- An AS can favor or disfavor certain AS’s for traffic transit from itself
 - By choosing those paths among the options

Some Examples

ISP X — ISP P — ISP Y
ISP Z — Peering — ISP X

BGP Messages

- Open
 - Announces AS ID
 - Determines hold timer – interval between keep_alive or update messages, zero interval implies no keep_alive
- Keep_alive
 - Sent periodically (but before hold timer expires) to peers to ensure connectivity.
 - Sent in place of an UPDATE message
- Notification
 - Used for error notification
 - TCP connection is closed immediately after notification

BGP UPDATE Message

- List of withdrawn routes
- Network layer reachability information
 - List of reachable prefixes
- Path attributes
 - Origin
 - Path
 - Metrics: used by policies for path selection
- All prefixes advertised in message have same path attributes
LOCAL_PREF

- Local (within an AS) mechanism to provide relative priority among BGP routers (e.g. R3 over R4)

![Diagram of BGP network with R1, R2, R3, and R4, showing I-BGP and AS 256, 300 connections]

LOCAL_PREF – Common Uses

- Routers have a default LOCAL PREF
 - Can be changed for specific ASes
- Peering vs. transit
 - Prefer to use peering connection, why?
- In general, customer > peer > provider
 - Use LOCAL PREF to ensure this

AS_PATH

- List of traversed AS’s

![Diagram of AS_PATH with AS 200, 100, 300, and 500, showing routes 170.10.0.0/16, 180.10.0.0/16, and AS_PATH values]

Multi-Exit Discriminator (MED)

- Hint to external neighbors about the preferred path into an AS
 - Non-transitive attribute
 - Different AS choose different scales
- Used when two AS’s connect to each other in more than one place

![Diagram of MED with AS 200, 100, 300, and 500, showing MED values and routes]
MED

- Hint to R1 to use R3 over R4 link
- Cannot compare AS40’s values to AS30’s

Path Selection Criteria

- Attributes + external (policy) information
- Rough ordering for path selection
 - Highest LOCAL-PREF
 - Captures business relationships and other factors
 - Shortest AS-PATH
 - Lowest origin type
 - Lowest MED (if routes learned from same neighbor)
 - eBGP over iBGP-learned
 - Lowest internal routing cost to border router
 - Tie breaker, e.g., lowest router ID

Outline

- Routing hierarchy
- Internet structure
- External BGP (E-BGP)
- Internal BGP (I-BGP)
Internal vs. External BGP

- BGP can be used by R3 and R4 to learn routes
- How do R1 and R2 learn routes?
- Border gateways also need to run an internal routing protocol
 - Establish connectivity between routers inside AS
 - I-BGP: uses same messages as E-BGP

I-BGP Route Advertisements

- I-BGP uses different rules about re-advertising prefixes:
 - Prefix learned from E-BGP can be advertised to I-BGP neighbor and vice-versa, but
 - Prefix learned from I-BGP neighbors cannot be advertised to other I-BGP neighbors → direct connections (TCP) for I-BGP routers
 - Reason: AS PATH is the same AS and thus danger of looping.

How Do ISPs Peer?

- Public peering: use network to connect large number of ISPs in Internet eXchange Point (IXP)
 - Network managed by IXP operator
 - Layer 2 private network
 - Efficient - can have 100s of ISPs
- Private peering: directly connect ISP border router
 - Set up as private connection
 - Typically done in an Internet eXchange Point (IXP)

Important Concepts

- Wide area Internet structure and routing driven by economic considerations
 - Customer, providers and peers
 - BGP designed to:
 - Provide hierarchy that allows scalability
 - Allow enforcement of policies related to structure
 - Mechanisms
 - Path vector – scalable, hides structure from neighbors, detects loops quickly