
1

15-441 Computer Networking

Lecture 9 – IPv6, Translations
Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

15-441
15-641

Outline

• IPv6

• Translation: too many names and
addresses!

2

IPv6

• “Next generation” IP.
• Most urgent issue: increasing

address space.
• 128 bit addresses

• Simplified header for faster
processing:
• No checksum (why not?)
• No fragmentation (?)

• Support for guaranteed
services: priority and flow id

• Options handled as “next
header”
• reduces overhead of handling

options

3

V/PrV/Pr Flow labelFlow label

LengthLength NextNext Hop LHop L

Source IP addressSource IP address

Destination IP addressDestination IP address

IPv6 Addressing

• Do we need more addresses? Probably, long term
• Big panic in 90s: “We’re running out of addresses!”
• Big worry: Devices. Small devices. Cell phones, toasters,

everything.
• 128 bit addresses provide space for structure (good!)

• Hierarchical addressing is much easier
• Assign an entire 48-bit sized chunk per LAN – use Ethernet

addresses
• Different chunks for geographical addressing, the IPv4 address

space,
• Perhaps help clean up the routing tables - just use one huge chunk

per ISP and one huge chunk per customer.

4

Registry010 Provider HostSub
NetSubscriber

2

IPv6 Autoconfiguration

• Serverless (“Stateless”). No manual config at all.
• Only configures addressing items, NOT other host things

• If you want that, use DHCP.

• Link-local address
• 1111 1110 10 :: 64 bit interface ID (usually from Ethernet addr)

• (fe80::/64 prefix)
• Uniqueness test (“anyone using this address?”)
• Router contact (solicit, or wait for announcement)

• Contains globally unique prefix
• Usually: Concatenate this prefix with local ID  globally unique IPv6 ID

• DHCP took some of the wind out of this, but nice for “zero-conf”
(many OSes now do this for both v4 and v6)

5

Fast Path versus Slow Path

• Common case: Switched in silicon (“fast path”)
• Almost everything

• Weird cases: Handed to CPU (“slow path”, or “process
switched”)
• Fragmentation
• TTL expiration (traceroute)
• IP option handling

• Slow path is evil in today’s environment
• “Christmas Tree” attack sets weird IP options, bits, and overloads

router.
• Developers cannot (really) use things on the slow path

• Slows down their traffic – not good for business
• If it became popular, they’d be in the soup!

6

IPv6 Header Cleanup: Options

• 32 IPv4 options → variable length header
• Rarely used
• No development / many hosts/routers do not support

• Worse than useless: Packets w/options often even get
dropped!

• Processed in “slow path”.
• IPv6 options: “Next header” pointer

• Combines “protocol” and “options” handling
• Next header: “TCP”, “UDP”, etc.

• Extensions header: Chained together
• Makes it easy to implement host-based options
• One value “hop-by-hop” examined by intermediate

routers
• E.g., “source route” implemented only at intermediate hops

7

IPv6 Header Cleanup: “no”

• No checksum
• Motivation was efficiency: If packet corrupted at hop 1,

don’t waste b/w transmitting on hops 2..N.
• Useful when corruption frequent, b/w expensive
• Today: corruption is rare, bandwidth is cheap

• No fragmentation
• Router discard packets, send ICMP “Packet Too Big”

→ host does MTU discovery and fragments
• Reduced packet processing and network complexity.
• Increased MTU a boon to application writers
• Hosts can still fragment - using fragmentation header.

Routers don’t deal with it any more.

8

3

Migration from IPv4 to IPv6

• Interoperability with IP v4 is necessary for
incremental deployment.

• Combination of mechanisms:
• Dual stack operation: IP v6 nodes support both

address types
• Tunnel IP v6 packets through IP v4 clouds
• IPv4-IPv6 translation at edge of network

• NAT must not only translate addresses but also translate
between IPv4 and IPv6 protocols

• IPv6 addresses based on IPv4 – no benefit!
• More on NATs and tunnels in the next lecture

9

Examples of Transition Models

• Green Old Networks and red
New Networks communicate
through grey ISPs

• ISPs only support OIP
• NN-NN can use tunnel, or

reflector or NIP backbone
• NN-ON requires translation

• ISPs support OIP and NIP
• NN-NN can be native e-e
• NN-ON still requires translation

• Translation is unattractive
• Complex, no benefit of larger

address space
• Incentive for deploying NIP?

10

OIP only
OIP +

NIP

OIP only

OIP +
NIP

Outline

• IPv6

• Translation: too many names and
addresses!
• ARP
• DNS

11

Too Much of a Good Thing?

• Hosts have a
• host name
• IP address
• MAC address

• There is a reason ..
• Remember?

• But how do we translate?

12

Application

Presentation

Session

Transport

Network

Data link

Physical

4

13

IP to MAC Address Translation

• How does one find the Ethernet address of
a IP host?

• Address Resolution Protocol - ARP
• Broadcast search for IP address

• E.g., “who-has 128.2.184.45 tell 128.2.206.138” sent
to Ethernet broadcast (all FF address)

• Destination responds (only to requester using
unicast) with appropriate 48-bit Ethernet
address
• E.g, “reply 128.2.184.45 is-at 0:d0:bc:f2:18:58” sent

to 0:c0:4f:d:ed:c6

14

Caching ARP Entries

• Efficiency Concern
• Would be very inefficient to use ARP

request/reply every time need to send IP
message to machine

• Each Host Maintains Cache of ARP Entries
• Add entry to cache whenever get ARP

response
• “Soft state”: set timeout of ~20 minutes

15

ARP Cache Example

• Show using command “arp -a”
Interface: 128.2.222.198 on Interface 0x1000003
Internet Address Physical Address Type
128.2.20.218 00-b0-8e-83-df-50 dynamic
128.2.102.129 00-b0-8e-83-df-50 dynamic
128.2.194.66 00-02-b3-8a-35-bf dynamic
128.2.198.34 00-06-5b-f3-5f-42 dynamic
128.2.203.3 00-90-27-3c-41-11 dynamic
128.2.203.61 08-00-20-a6-ba-2b dynamic
128.2.205.192 00-60-08-1e-9b-fd dynamic
128.2.206.125 00-d0-b7-c5-b3-f3 dynamic
128.2.206.139 00-a0-c9-98-2c-46 dynamic
128.2.222.180 08-00-20-a6-ba-c3 dynamic
128.2.242.182 08-00-20-a7-19-73 dynamic
128.2.254.36 00-b0-8e-83-df-50 dynamic

16

CMU’s Internal Network Structure

• CMU Uses Routing Internally
• Maintains forwarding tables using OSPF
• Most CMU hosts cannot be reached at link layer

host host host

LAN 1

...

router

128.2.198.222

gigrouter.net.cs.cmu.edu
128.2.254.36

host

jmac.library.cmu.edu
128.2.20.218

Forwarding Table Entry
O 128.2.20.0/23 via 128.2.255.20, Vlan255

router

hl-vl255.gw.cmu.edu
128.2.255.20

5

17

Proxy ARP

• Provides Link-Layer Connectivity Using IP Routing
• Local router (gigrouter) sees ARP request
• Uses IP addressing to locate host, i.e., which subnet
• Replies with its own MAC address - becomes “Proxy” for remote host

• Must then forward packets for that destination
• Requestor thinks that it is communicating directly with remote host

host host host

LAN 1

...

router

128.2.198.222

gigrouter.net.cs.cmu.edu
128.2.254.36

00-b0-8e-83-df-50

host

jmac.library.cmu.edu
128.2.20.218

Outline

• IPv6

• Translation: too many names and
addresses!
• ARP
• DNS

18

19

Naming

• How do we efficiently locate resources?
• DNS: name  IP address

• Challenge
• How do we scale this to the wide area?

20

Obvious Solutions (1)

Why not centralize DNS?
• Distant centralized database

• Traffic volume
• Single point of failure
• Single point of update
• Single point of control

• Doesn’t scale!

6

21

Obvious Solutions (2)

Why not use /etc/hosts?
• Original Name to Address Mapping

• Flat namespace
• /etc/hosts keeps track of the mappings
• SRI kept main copy
• Downloaded regularly

• Count of hosts was increasing: machine per
domain  machine per user
• Many more downloads
• Many more updates

22

Domain Name System Goals

• Basically a wide-area distributed database
• Scalability
• Decentralized maintenance
• Robustness
• Global scope

• Names mean the same thing everywhere
• Don’t need

• Atomicity
• Strong consistency

23

Programmer’s View of DNS

• Conceptually, programmers can view the
DNS database as a collection of millions of
host entry structures:

• Functions for retrieving host entries from
DNS:
•getaddrinfo: query key is a DNS host name.
•getnameinfo: query key is an IP address.

/* DNS host entry structure */
struct addrinfo {

int ai_family; /* host address type (AF_INET) */
size_t ai_addrlen; /* length of an address, in bytes */
struct sockaddr *ai_addr; /* address! */
char *ai_canonname; /* official domain name of host */
struct addrinfo *ai_next; /* other entries for host */

};

24

DNS Records

RR format: (class, name, value, type, ttl)

• DB contains tuples called resource records (RRs)
• Classes = Internet (IN), Chaosnet (CH), etc.
• Each class defines value associated with type

FOR IN class:

• Type=A
• name is hostname
• value is IP address

• Type=NS
• name is domain (e.g. foo.com)
• value is name of authoritative name

server for this domain

• Type=CNAME
• name is an alias name for some

“canonical” (the real) name
• value is canonical name

• Type=MX
• value is hostname of mailserver

associated with name

7

25

Properties of DNS Host Entries

• Different kinds of mappings are possible:
• Simple case: 1-1 mapping between domain name and

IP addr:
• kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242

• Multiple domain names maps to the same IP address:
• eecs.mit.edu and cs.mit.edu both map to 18.62.1.6

• Single domain name maps to multiple IP addresses:
• aol.com and www.aol.com map to multiple IP addrs.

• Some valid domain names don’t map to any IP
address:
• for example: cmcl.cs.cmu.edu

26

DNS Message Format

Identification

No. of Questions

No. of Authority RRs

Questions (variable number of answers)

Answers (variable number of resource records)

Authority (variable number of resource records)

Additional Info (variable number of resource records)

Flags

No. of Answer RRs

No. of Additional RRs
Name, type fields
for a query

RRs in response
to query

Records for
authoritative
servers

Additional
“helpful info that
may be used

12 bytes

27

DNS Header Fields

• Identification
• Used to match up request/response

• Flags
• 1-bit to mark query or response
• 1-bit to mark authoritative or not
• 1-bit to request recursive resolution
• 1-bit to indicate support for recursive resolution

28

DNS Design: Hierarchy Definitions

root

edunet
org

ukcom

gwu ucb cmu bu mit

cs ece
cmcl

• Each node in hierarchy
stores a list of names that
end with same suffix

• Suffix = path up tree
• E.g., given this tree, where

would following be stored:
• Fred.com
• Fred.edu
• Fred.cmu.edu
• Fred.cmcl.cs.cmu.edu
• Fred.cs.mit.edu

8

29

DNS Design: Zone Definitions

root

edunet
org

ukcom
ca

gwu ucb cmu bu mit

cs ece
cmcl Single node

Subtree

Complete
Tree

• Zone = contiguous section
of name space

• E.g., Complete tree, single
node or subtree

• A zone has an associated
set of name servers

• Must store list of names and
tree links

30

DNS Design: Management

• Zones are created by convincing owner node
(parent) to create/delegate a subzone
• Records within zone stored multiple redundant

name servers
• Primary/master name server updated manually
• Secondary/redundant servers updated by zone

transfer of name space
• Zone transfer is a bulk transfer of the “configuration” of a

DNS server – uses TCP to ensure reliability
• Example:

• CS.CMU.EDU created by CMU.EDU administrators
• Who creates CMU.EDU or .EDU?

31

DNS: Root Name Servers

• Responsible for “root” zone
• Approx. 13 root name servers

worldwide
• Currently {a-m}.root-

servers.net
• Very well protected

• Local name servers contact
root servers when they cannot
resolve a name
• Configured with well-known

root servers
• Newer picture  www.root-

servers.org

32

Root Zone

• Generic Top Level Domains (gTLD) = .com,
.net, .org, etc…

• Country Code Top Level Domain (ccTLD) =
.us, .ca, .fi, .uk, etc…

• Root server ({a-m}.root-servers.net) also
used to cover gTLD domains
• Load on root servers was growing quickly!
• Moving .com, .net, .org off root servers was

clearly necessary to reduce load  done Aug
2000

9

33

Servers/Resolvers

• Each host has a resolver
• Typically a library that applications can link to
• Local name servers hand-configured (e.g.

/etc/resolv.conf)
• Name servers

• Either responsible for some zone or…
• Local servers

• Do lookup of distant host names for local hosts
• Typically answer queries about local zone

34

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu
DNS

server

35

Typical Resolution: Steps

• Steps for resolving www.cmu.edu
• Application calls gethostbyname() (RESOLVER)
• Resolver contacts local name server (S1)
• S1 queries root server (S2) for (www.cmu.edu)
• S2 returns NS record for cmu.edu (S3)
• What about A record for S3?

• This is what the additional information section is for (PREFETCHING)
• S1 queries S3 for www.cmu.edu
• S3 returns A record for www.cmu.edu

36

Lookup Methods

Recursive query:
• Server goes out and

searches for more info
(recursive)

• Only returns final answer
or “not found”

Iterative query:
• Server responds with as

much as it knows
(iterative)

• “I don’t know this name,
but ask this server”

Workload impact on choice?
• Local server typically does

recursive
• Root/distant server does

iterative requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6authoritative name
server

dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

10

37

Workload and Caching

• Are all servers/names likely to be equally popular?
• Why might this be a problem? How can we solve this problem?

• DNS responses are cached
• Quick response for repeated translations
• Other queries may reuse some parts of lookup

• DNS negative queries are cached
• Don’t have to repeat past mistakes, e.g., misspellings

• Cached data periodically times out
• Lifetime (TTL) of data controlled by owner of data
• TTL passed with every record

• Responses can include additional information
• Often used for prefetching, e.g., CNAME/MX/NS records

38

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu
DNS

server

39

Subsequent Lookup Example

Client Local
DNS server

root & edu
DNS server

cmu.edu
DNS server

cs.cmu.edu
DNS

server

ftp.cs.cmu.edu

40

Reliability

• DNS servers are replicated
• Name service available if ≥ one replica is up
• Queries can be load balanced between replicas
• Queries return multiple A records

• UDP used for queries
• Need reliability  must implement this on top of UDP!
• Why not just use TCP?

• Try alternate servers on timeout
• Exponential backoff when retrying same server

• Same identifier for all queries
• Client does not care which server responds

11

41

Mail Addresses

• MX records point to mail exchanger for a
name
• E.g. mail.acm.org is MX for acm.org

• Addition of MX record type proved to be a
challenge
• How to get mail programs to lookup MX record

for mail delivery?
• Needed critical mass of such mailers

42

Tracing Hierarchy (1)

• Dig Program
• Allows querying of DNS system
• Use flags to find name server (NS)
• Disable recursion so that operates one step at a time

• All .edu names handled by set of servers

unix> dig +norecurse @a.root-servers.net NS kittyhawk.cmcl.cs.cmu.edu

;; AUTHORITY SECTION:
edu. 172800 IN NS L3.NSTLD.COM.
edu. 172800 IN NS D3.NSTLD.COM.
edu. 172800 IN NS A3.NSTLD.COM.
edu. 172800 IN NS E3.NSTLD.COM.
edu. 172800 IN NS C3.NSTLD.COM.
edu. 172800 IN NS F3.NSTLD.COM.
edu. 172800 IN NS G3.NSTLD.COM.
edu. 172800 IN NS B3.NSTLD.COM.
edu. 172800 IN NS M3.NSTLD.COM.

43

DNS Summary

• Motivations  large distributed database
• Scalability
• Independent update
• Robustness

• Hierarchical database structure
• Zones
• How is a lookup done

• Caching/prefetching and TTLs
• Reverse name lookup
• What are the steps to creating your own

domain?

