

IPv4 Header Fields

- Identifier, flags, fragment offset → used for fragmentation
- Time to live
 - · Must be decremented at each router
 - Packets with TTL=0 are thrown away
 - Ensure packets exit the network
- Protocol
- · Demultiplexing to higher layer protocols
- TCP = 6, ICMP = 1, UDP = 17...
- Header checksum
 - · Ensures some degree of header integrity
 - Relatively weak 16 bit
- Source and destination IP addresses
- Options
 - · E.g. Source routing, record route, etc.
 - · Performance issues
 - Poorly supported

5

IP Delivery Model

- Best effort service
 - · Network will do its best to get packet to destination
- · Does NOT guarantee:
 - Any maximum latency or even ultimate success
 - · Sender will be informed if packet doesn't make it
 - · Packets will arrive in same order sent
 - · Just one copy of packet will arrive
- Implications
 - · Scales very well (really, it does)
 - · Higher level protocols must make up for shortcomings
 - Reliably delivering ordered sequence of bytes → TCP
 - Some services not feasible (or hard)
 - · Latency or bandwidth guarantees

6

IP Fragmentation

- Every network has own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 - E.g., Ethernet is 1500 bytes
 - Don't know MTUs of all intermediate networks in advance
- IP Solution
 - · When hit network with small MTU, router fragments packet
 - Destination host reassembles the paper why?

,

Fragmentation Related Fields

- Length
 - Length of IP fragment
- Identification
 - To match up with other fragments
- Flags
 - · Don't fragment flag
 - · More fragments flag
- Fragment offset
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)

Important Concepts

- Base-level protocol (IP) provides minimal service level
 - · Allows highly decentralized implementation
 - Each step involves determining next hop
 - · Most of the work at the endpoints
- ICMP provides low-level error reporting
- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing → hierarchical, CIDR
- IP service → best effort, simplicity of routers
- IP packets → header fields, fragmentation, ICMP

17

Outline

- IP protocol
- NATs
- Tunnels

18

Altering the Addressing Model

- Original IP Model: Every host has unique IP address
- Implications
 - Any host can communicate with any other host
 - · Any host can act as a server
 - Just need to know host ID and port number
 - System is open complicates security
 - Any host can attack any other host
 - Possible to forge packets
 - Use invalid source address
- Places pressure on the address space
 - Every host requires "public" IP address

0

Challenges When Connecting to Public Internet

- Not enough IP addresses for every host in organization
 - · Increasingly hard to get large address blocks
- Security
 - Don't want every machine in organization known to outside world
 - Want to control or monitor traffic in / out of organization

NAT Considerations

- NAT has to be consistent during a session.
 - Mapping (hard state) must be maintained during the session
 - Recall Goal 1 of Internet: Continue despite loss of networks or gateways
 - Recycle the mapping after the end of the session
 - · May be hard to detect
- NAT only works for certain applications.
 - Some applications (e.g. ftp) pass IP information in payload oops
 - Need application level gateways to do a matching translation
 - Peer-peer, multi-player games have problems who is server?
- NATs are loved and hated
 - Breaks some applications
 - Inhibits deployment of new applications like (but so do firewalls!)
 - + Little NAT boxes make home networking simple
 - + Saves addresses, makes allocation simple

7

Often Combined with Firewalls

- NATs already help with security
 - Hides IP addresses used in internal network
 - Easy to change ISP: only NAT box needs to have IP address
 - Fewer registered IP addresses required
 - Basic protection against remote attack
 - Does not expose internal structure to outside world
 - · Can control what packets come in and out of system
 - · Can reliably determine whether packet from inside or outside
- But we have the disadvantages ...
 - Contrary to the "open addressing" scheme envisioned for IP addressing
 - May be problematic for new application types, e.g., p2p
 - But network managers like it that way "default off"

Overlay Networks

- A network "on top of the network".
 - E.g., initial Internet deployment
 - Internet routers connected via phone lines
 - An overlay on the phone network
 - Tunnels between nodes on a current network
- Examples: IPv6 "6bone", multicast "Mbone".
- But not limited to IP-layer protocols...
 - Peer-to-peer networks, anonymising overlays
 - Application layer multicast
 - Improve routing, e.g. work around route failures

Important Concepts

- IP has a very simple service model
- IPv4 is a simple protocol, but there are issues
 - 32 bit address space is too small
 - Some messy features, e.g., fragmentation
 - Very simple "control" protocol
- NATs change to Internet addressing model
 - Have moved away from "everyone knows everybody" model of original Internet
- Firewalls + NAT hide internal networks
- VPN / tunneling build private networks on top of commodity network