Outline

The Good, the Bad and the Ugly

- IP protocol
- NATs
- Tunnels

IP Service Model

- Low-level communication model provided by Internet
- Datagram
 - Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
 - Analogous to letter or telegram

IPv4 Header Fields

- Version: IP Version
 - 4 for IPv4
- HLen: Header Length
 - 32-bit words (typically 5)
- TOS: Type of Service
 - Priority information
- Length: Packet Length
 - Bytes (including header)
- Header format can change with versions
 - First byte identifies version
- Length field limits packets to 65,535 bytes
 - In practice, break into much smaller packets for network performance considerations
IPv4 Header Fields

- Identifier, flags, fragment offset → used for fragmentation
- Time to live
 - Must be decremented at each router
 - Packets with TTL=0 are thrown away
 - Ensure packets exit the network
- Protocol
 - Demultiplexing to higher layer protocols
 - TCP = 6, ICMP = 1, UDP = 17…
- Header checksum
 - Ensures some degree of header integrity
 - Relatively weak – 16 bit
- Source and destination IP addresses
- Options
 - E.g., Source routing, record route, etc.
 - Performance issues
 - Poorly supported

IP Delivery Model

- Best effort service
 - Network will do its best to get packet to destination
 - Does NOT guarantee:
 - Any maximum latency or even ultimate success
 - Sender will be informed if packet doesn’t make it
 - Packets will arrive in same order sent
 - Just one copy of packet will arrive
- Implications
 - Scales very well (really, it does)
 - Higher level protocols must make up for shortcomings
 - Reliably delivering ordered sequence of bytes → TCP
 - Some services not feasible (or hard)
 - Latency or bandwidth guarantees

IP Fragmentation

- Every network has own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 - E.g., Ethernet is 1500 bytes
 - Don’t know MTUs of all intermediate networks in advance
- IP Solution
 - When hit network with small MTU, router fragments packet
 - Destination host reassembles the paper – why?

Fragmentation Related Fields

- Length
 - Length of IP fragment
- Identification
 - To match up with other fragments
- Flags
 - Don’t fragment flag
 - More fragments flag
- Fragment offset
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)
IP Fragmentation Example #1

- Host
- MTU = 4000
- Length = 3820, M=0

IP Fragmentation Example #2

- MTU = 2000
- Length = 3820, M=0
- 3800 bytes

- MTU = 2000
- Length = 3820, M=1, Offset = 0
- 1980 bytes

- MTU = 2000
- Length = 1540, M=0, Offset = 1980
- 1820 bytes

Fragmentation is Harmful

- Uses resources poorly
 - Forwarding costs per packet
 - Best if we can send large chunks of data
 - Worst case: packet just bigger than MTU
- Poor end-to-end performance
 - Loss of a fragment
- Path MTU discovery protocol → determines minimum MTU along route
 - Uses ICMP error messages
- Common theme in system design
 - Assure correctness by implementing complete protocol
 - Optimize common cases to avoid full complexity

Internet Control Message Protocol (ICMP)

- Short messages used to send error & other control information
- Examples
 - Ping request / response
 - Can use to check whether remote host reachable
 - Destination unreachable
 - Indicates how packet got & why couldn’t go further
 - Flow control
 - Slow down packet delivery rate
 - Redirect
 - Suggest alternate routing path for future messages
 - Router solicitation / advertisement
 - Helps newly connected host discover local router
 - Timeout
 - Packet exceeded maximum hop limit
IP MTU Discovery with ICMP

- Typically send series of packets from one host to another
- Typically, all will follow same route
 - Routes remain stable for minutes at a time
- Makes sense to determine path MTU before sending real packets
- Operation: Send max-sized packet with “do not fragment” flag set
 - If encounters problem, ICMP message will be returned
 - “Destination unreachable: Fragmentation needed”
 - Usually indicates MTU problem encountered
- ICMP abuse? Other solutions?

IP Packet

Length = 4000, Don’t Fragment

When successful, no reply at IP level
- “No news is good news”
- Higher level protocol might have some form of acknowledgement
Important Concepts

- Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
- ICMP provides low-level error reporting

- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing → hierarchical, CIDR
- IP service → best effort, simplicity of routers
- IP packets → header fields, fragmentation, ICMP

Outline

- IP protocol
- NATs
- Tunnels

Altering the Addressing Model

- Original IP Model: Every host has unique IP address
- Implications
 - Any host can communicate with any other host
 - Any host can act as a server
 - Just need to know host ID and port number
 - System is open – complicates security
 - Any host can attack any other host
 - Possible to forge packets
 - Use invalid source address
- Places pressure on the address space
 - Every host requires “public” IP address

Challenges When Connecting to Public Internet

- Not enough IP addresses for every host in organization
 - Increasingly hard to get large address blocks
- Security
 - Don’t want every machine in organization known to outside world
 - Want to control or monitor traffic in / out of organization

C: Client
S: Server
But not All Hosts are Equal!

- Most machines within organization are used by individuals
- For most applications, they act as clients
- Small number of machines act as servers for entire organization
 - E.g., mail server, web, ...
 - All traffic to outside passes through firewall

(Most) machines within organization do not need public IP addresses!

Reducing Address Use: Network Address Translation

- Within Organization: assign every host a private IP address
 - IP addresses 10/8 & 192.168/16 set aside for this
 - Route within organization by IP protocol, can do subnetting, ...
- NAT translates between public and private IP addresses
 - Does not let any packets from internal nodes escape
 - Outside world does not need to know about internal addresses

NAT: Opening Client Connection

- Client 10.2.2.2 wants to connect to server 198.2.4.5:80
 - OS assigns ephemeral port (1000)
 - Connection request intercepted by firewall
 - Maps client to port of firewall (5000)
 - Creates NAT table entry

NAT: Client Request

- Firewall acts as proxy for client
 - Intercepts message from client and marks itself as sender
NAT: Server Response

- Firewall acts as proxy for client
 - Acts as destination for server messages
 - Relabels destination to local addresses

NAT: Enabling Servers

- Use port mapping to make servers available
 - Manually configure NAT table to include entry for well-known port
 - External users give address 243.4.4.4:80
 - Requests forwarded to server

NAT Considerations

- NAT has to be consistent during a session.
 - Mapping (hard state) must be maintained during the session
 - Recall Goal 1 of Internet: Continue despite loss of networks or gateways
 - Recycle the mapping after the end of the session
 - May be hard to detect
- NAT only works for certain applications.
 - Some applications (e.g. ftp) pass IP information in payload - oops
 - Need application level gateways to do a matching translation
 - Peer-peer, multi-player games have problems – who is server?
- NATs are loved and hated
 - Breaks some applications
 - Inhibits deployment of new applications like (but so do firewalls!)
 - Little NAT boxes make home networking simple
 - Saves addresses, makes allocation simple

Often Combined with Firewalls

- NATs already help with security
 - Hides IP addresses used in internal network
 - Easy to change ISP: only NAT box needs to have IP address
 - Fewer registered IP addresses required
 - Basic protection against remote attack
 - Does not expose internal structure to outside world
 - Can control what packets come in and out of system
 - Can reliably determine whether packet from inside or outside
- But we have the disadvantages …
 - Contrary to the “open addressing” scheme envisioned for IP addressing
 - May be problematic for new application types, e.g., p2p
 - But network managers like it that way – “default off”
Many Options Exist for Peer-Peer

- NAT recognizes certain protocols and behaves as a application gateway
- Used for standard protocols such as ftp
- Applications negotiate directly with NAT or firewall – need to be authorized
- Multiple protocols dealing with different scenarios
- Punching holes in NAT: peers contact each other simultaneously using a known public (IP, port), e.g. used with rendezvous service
- Use publicly accessible rendezvous service to exchange accessibility information
- Assumes NATs do end-point independent mapping
- But remains painful!

Outline

- IP protocol
- NATs
- Tunnels

Motivation

There are many cases where not all routers have the same features or consistent state
- An experimental IP feature is only selectively deployed – how do we use this feature e-e?
 - E.g., IP multicast
- A few are using a protocol other than IPv4 – how can they communicate?
 - E.g., incremental deployment of IPv6
- I am traveling with a CMU laptop - how can I keep my CMU IP address?
 - E.g., must have CMU address to use services

Tunneling

- Force a packet to go to a specific point in the network.
 - Cannot rely on routers on regular path
- Achieved by adding an extra IP header to the packet with a new destination address.
 - Similar to putting a letter in another envelope
 - Preferable to IP source routing
- Used increasingly to deal with special routing requirements or new features.
 - Mobile IP...
 - Multicast, IPv6, research, ..
IP-in-IP Tunneling

- Described in RFC 1993.
- IP source and destination address identify tunnel endpoints.
- Protocol id = 4.
- Several fields are copies of the inner-IP header.
 - TOS, some flags, ...
- Inner header is not modified, except for decrementing TTL.

Tunneling Applications

- Virtual private networks.
 - Connect subnets of a corporation using IP tunnels
 - Often combined with IP Sec (later)
- Support for new or unusual protocols.
 - Routers that support the protocols use tunnels to "bypass" routers that do not support it
 - E.g. multicast, IPv6 (!)
- Force packets to follow non-standard routes.
 - Routing is based on outer-header
 - E.g. mobile IP (later)

Extending Private Network

- Supporting Road Warrior
 - Employee working remotely with assigned IP address 198.3.3.3
 - Wants to appear to rest of corporation as if working internally
 - From address 10.6.6.6
 - Gives access to internal services (e.g., ability to send mail)
- Virtual Private Network (VPN)
 - Overlays private network on top of regular Internet
Supporting VPN by Tunneling

- Idea: client sets up tunnel to company’s firewall
- Example: client wants to send packet to internal node 10.1.1.1
- Entering Tunnel
 - Add extra IP header directed to firewall (243.4.4.4)
 - Original header becomes part of payload
 - Possible to encrypt it
- Exiting Tunnel
 - Firewall receives packet
 - Strips off header
 - Sends through internal network to destination

Overlay Networks

- A network “on top of the network”.
 - E.g., initial Internet deployment
 - Internet routers connected via phone lines
 - An overlay on the phone network
 - Tunnels between nodes on a current network
 - Examples: IPv6 “6bone”, multicast “Mbone”.
- But not limited to IP-layer protocols…
 - Peer-to-peer networks, anonymising overlays
 - Application layer multicast
 - Improve routing, e.g. work around route failures

Important Concepts

- IP has a very simple service model
- IPv4 is a simple protocol, but there are issues
 - 32 bit address space is too small
 - Some messy features, e.g., fragmentation
 - Very simple “control” protocol
- NATs change to Internet addressing model
 - Have moved away from “everyone knows everybody” model of original Internet
- Firewalls + NAT hide internal networks
- VPN / tunneling build private networks on top of commodity network