

Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - Add header, mark and detect frame boundaries, ...
- Error control: error detection and correction to deal with bit errors.
 - May also include other reliability support, e.g. retransmission
- Flow control: avoid sender overrunning receiver.
- Media access control (MAC): which frame should be sent over the link next.
 - Easy for point-to-point links
 - Harder for multi-access links: who gets to send?

Forward units of data based on address in header. Many data-link technologies use switching. • Virtual circuits: Frame Relay, ATM, X.25, ... • Packets: Ethernet, ... "Switching" also happens at the network layer. • Layer 3: Internet protocol • In this case, address is an IP address • IP over SONET, IP over ATM, ... • Otherwise, operation is very similar Switching is different from traditional (hard) circuits • E.g., telephone switches (not covered in this course) • Switching is based on timing – no addresses

Connections or Not?

- Two basic approaches to packet forwarding
 - Connectionless
 - (virtual) Circuit switched
- When would you use?

Virtual Circuit Switching

- Two stage process similar to traditional circuits
 - Setup connection + create VC ID
 - Send packets -
- RTT introduced before any data is sent
- Per packet overhead can be smaller (VCI << adr)
- Switch failures are hard to deal with
- Reserves resources for connection possible
- Widely used in core networks (e.g. MPLS)
- More on this later

Outline: Contention-based Access • Aloha • Ethernet MAC • Collisions • Ethernet Frames

Random Access Protocols When node has packet to send Transmit at full channel data rate R No a priori coordination among nodes Two or more transmitting nodes → "collision" Random access MAC protocol specifies: How to detect collisions How to recover from collisions (e.g., via delayed retransmissions) Examples of random access MAC protocols: Slotted ALOHA and ALOHA CSMA and CSMA/CD

Collisions in ALOHA Original ALOHA had no synchronization Pkt needs transmission: Send without awaiting for beginning of slot Many chances for collision Pkt sent at t₀ collide with other pkts sent in [t₀-1, t₀+1] will overlap with end of with end of i's frame i's frame i's frame

Ethernet CSMA/CD: Making it work

Jam Signal: make sure all other transmitters are aware of collision; 48 bits;

Exponential Backoff:

- If deterministic delay after collision, collision will occur again in lockstep
- Why not random delay with fixed mean?
 - Few senders → needless waiting
 - Too many senders → too many collisions
- Goal: adapt retransmission attempts to estimated current load
 - · heavy load: random wait will be longer

Ethernet Backoff Calculation

- Delay is set as K slots control K
- Exponentially increasing random delay
 - Infer senders from # of collisions
 - More senders → increase wait time
- First collision: choose K from {0,1}; delay is K x 512 bit transmission times
- After second collision: choose K from {0,1,2,3}...
- After ten or more collisions, choose K from {0,1,2,3,4,...,1023}

Outline

- Aloha
- Ethernet MAC
- Collisions
- Ethernet Frames

Delay & Collision Detection

- Speed in cable ~= 60% * c ~= 1.8 x 10^8 m/s
- 10Mb Ethernet, 2.5km cable
 - ~= 12.5us delay
 - +Introduced repeaters (max 5 segments)
 - Worst case 51.2us round trip time!
 - Corresponds to 512 bits
- Also used as slot time = 51.2us for backoff
 - After this time, sender is guaranteed sole access to link
 - Specifically, will have heard any signal sent in the previous slot

Scaling Ethernet

- What about scaling? 10Mbps, 100Mbps, 1Gbps, ...
 - Use a combination of reducing network diameter and increasing minimum minimum packet size
- Reality check: 40 Gbps is 4000 times 10 Mbps
 - 10 Mbps: 2.5 km and 64 bytes -> silly
 - Solution: switched Ethernet next lecture
- What about a maximum packet size?
 - Needed to prevent node from hogging the network
 - 1500 bytes in Ethernet

Outline • Aloha • Ethernet MAC • Collisions • Ethernet Frames

Ethernet Address Assignment

- Each adapter is given a globally unique 6-byte address at manufacturing time
 - Address space is allocated to manufacturers
 - 24 bits identify manufacturer
 - E.g., 0:0:15:* → 3com adapter
 - Frame is received by all adapters on a LAN and dropped if address does not match
- Special addresses
 - Broadcast FF:FF:FF:FF:FF is "everybody"
 - · Range of addresses allocated to multicast
 - Adapter maintains list of multicast groups node is interested in

And .. It is Easy to Manage

- You plug in the host and it basically works
 - No configuration at the datalink layer
 - · Today: may need to deal with security
- Protocol is fully distributed
- Broadcast-based.
 - In part explains the easy management
 - Some of the LAN protocols (e.g. ARP) rely on broadcast
 - Networking would be harder without ARP
 - Not having natural broadcast capabilities adds complexity to a LAN (e.g., ATM)
- Network managers love it!

Why Did Ethernet Win?

- Failure modes
 - Token rings network unusable (or expensive)
- Good performance in common case
 - · Deals well with bursty traffic
 - · Usually used at low load
- Volume → lower cost → higher volume
- Adaptable
 - To higher bandwidths (vs. FDDI)
 - To switching (vs. ATM)
- Easy incremental deployment (backwards compatible)
- Cheap cabling, etc

Summary

- CSMA/CD → carrier sense multiple access with collision detection
 - Why do we need exponential backoff?
 - Why does collision happen?
 - Why do we need a minimum packet size?
 - How does this scale with speed?
- Ethernet
 - What is the purpose of different header fields?
 - What do Ethernet addresses look like?
- What are some alternatives to Ethernet design?