
1

15-441 Computer Networking

Lecture 4 - Coding and Error Control
Peter Steenkiste

Fall 2014
www.cs.cmu.edu/~prs/15-441-F14

15-441 Computer Networking15-441
15-641

From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

Packets 0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

2

Link Layer: Implementation

• Implemented in “adapter”
• E.g., PCMCIA card, Ethernet card
• Typically includes: RAM, DSP chips, host bus interface, and link

interface

application
transport
network

link
physical

network
link

physical

M
M
M
M

Ht

HtHn
HtHnHl MHtHnHl

framephys. link

data link
protocol

adapter card

3

Datalink Functions

• Framing: encapsulating a network layer datagram into
a bit stream.
• Add header, mark and detect frame boundaries

• Media access: controlling which frame should be sent
over the link next.

• Error control: error detection and correction to deal
with bit errors.
• May also include other reliability support, e.g. retransmission

• Flow control: avoid that the sender outruns the
receiver

• Hubbing, bridging: extend the size of the network

4

2

Outline

• Encoding and decoding
• Translate between bits and digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

5

How Encode?

• Seems obvious, why take time with this?

V 0

.85

-.85

0 0 0 11 0 1 0 1

6

Why Encode?

0 1 0 1 How many more ones?

7

Why Do We Need Encoding?

• Keep receiver synchronized with sender.
• Create control symbols, in addition to regular data

symbols.
• E.g. start or end of frame, escape, ...

• Error detection or error corrections.
• Some codes are illegal so receiver can detect certain

classes of errors
• Minor errors can be corrected by having multiple adjacent

signals mapped to the same data symbol
• Encoding can be done one bit at a time or in multi-bit

blocks, e.g., 4 or 8 bits.
• Encoding can be very complex, e.g. wireless.

8

3

Non-Return to Zero (NRZ)

• 1  high signal; 0  low signal
• Used by Synchronous Optical Network (SONET)
• Long sequences of 1’s or 0’s can cause problems:

• Sensitive to clock skew, i.e. hard to recover clock
• DC bias hard to detect – low and high detected by difference

from average voltage

V 0

.85

-.85

0 0 0 11 0 1 0 1

9

Non-Return to Zero Inverted
(NRZI)

• 1  make transition; 0  signal stays the same
• Solves the problem for long sequences of 1’s, but

not for 0’s.

V 0

.85

-.85

0 0 0 11 0 1 0 1

10

Manchester Encoding

• Used by Ethernet
• 0=low to high transition, 1=high to low transition.
• Transition for every bit simplifies clock recovery
• DC balance has good electrical properties
• But you pay a price …

• Doubles the number of transitions – more spectrum!
• Circuitry must run twice as fast

V 0

.85

-.85

0 1 1 0

.1s

11

4B/5B Encoding

• Data coded as symbols of 5 line bits  4 data
bits, so 100 Mbps uses 125 MHz.
• Uses less frequency space than Manchester encoding

• Encoding ensures no more than 3 consecutive 0’s
• Uses NRZI to encode resulting sequence
• 16 data symbols, 8 control symbols

• Data symbols: 4 data bits
• Control symbols: idle, begin frame, etc.

• Example: FDDI.

12

4

4B/5B Encoding

0000
0001
0010
0011
0100
0101
0110
0111

11110
01001
10100
10101
01010
01011
01110
01111

Data Code

1000
1001
1010
1011
1100
1101
1110
1111

10010
10011
10110
10111
11010
11011
11100
11101

Data Code

13

From
datalink

To
modulator

Other Encodings

• 8B/10B: Fiber Channel and Gigabit Ethernet
• 64B/66B: 10 Gbit Ethernet (& 40 and 100 Gb/S)
• B8ZS: T1 signaling (bit stuffing)

• Encoding necessary for clocking
• Lots of approaches
• Rule of thumb:

• Little bandwidth  complex encoding
• Lots of bandwidth  simple encoding

Things to Remember

14

From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

Packets 0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

15

Outline

• Encoding
• Bits to digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

16

5

Framing

• How do we break up a stream of bits into frames?

0100010101011100101010101011101110000001111010101110101010101101011010111001

17

Framing

• A link layer function, defining which bits have
which function.

• Minimal functionality: mark the beginning and end
of packets (or frames).

• Some techniques:
• Out of band delimiters (e.g. 4B/5B control symbols)
• Frame delimiter characters with character stuffing
• Frame delimiter codes with bit stuffing
• Synchronous transmission (e.g. SONET)

• Boundaries are based on timing

18

Out-of-band: E.g., 802.5

• 802.5/token ring uses 4b/5b
• Start delim & end delim are “illegal” data codes

Start
delim

Access
ctrl Body checksumFrame

ctrl
Dest
adr

Src
adr

End
delim

Frame
status

19

Delimiter Based

• SYN: sync character
• SOH: start of header
• STX: start of text
• ETX: end of text

• What happens when ETX is in Body?

SYN SYN SOH Header STX Body ETX CRC

20

6

Character and Bit Stuffing

• Mark frames with special character.
• What happens when the user sends this character?
• Use escape character when controls appear in data:
• *abc*def *abc*def
• Very common on serial lines, in editors, etc.

• Mark frames with special bit sequence
• must ensure data containing this sequence can be transmitted
• example: suppose 11111111 is a special sequence.
• transmitter inserts a 0 when this appears in the data:
• 11111111  111111101
• must stuff a zero any time seven 1s appear:
• 11111110  111111100
• receiver unstuffs.

21

Ethernet Framing

• Preamble is 7 bytes of 10101010 (5 MHz square
wave) followed by one byte of 10101011

• Allows receivers to recognize start of transmission
after idle channel

preamble datagram length more stuff

22

Outline

• Encoding
• Bits to digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

23

Error Coding

• Transmission process may introduce errors into a
message.
• Single bit errors versus burst errors

• Detection:
• Requires a convention that some messages are invalid
• Hence requires extra bits
• An (n,k) code has codewords of n bits with k data bits and r

= (n-k) redundant check bits
• Correction

• Forward error correction: many related code words map to
the same data word

• Detect errors and retry transmission

24

7

Error Detection
• EDC= Error Detection and Correction bits (redundancy)
• D = Data protected by error checking, may include header fields
• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely
• Larger EDC field yields better detection and correction

25

Parity Checking

Single Bit Parity:
Detect single bit errors

26

27

Internet Checksum

Sender
• Treat segment contents

as sequence of 16-bit
integers

• Checksum: addition (1’s
complement sum) of
segment contents

• Sender puts checksum
value into checksum field
in header

Receiver
• Compute checksum of

received segment
• Check if computed

checksum equals checksum
field value:
• NO - error detected
• YES - no error detected.

But maybe errors
nonethless?

• Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Basic Concept:
Hamming Distance

• Hamming distance of two bit
strings = number of bit
positions in which they differ.

• If the valid words of a code
have minimum Hamming
distance D, then D-1 bit
errors can be detected.

• If the valid words of a code
have minimum Hamming
distance D, then [(D-1)/2] bit
errors can be corrected.

1 0 1 1 0
1 1 0 1 0

HD=2

HD=3

28

8

Cyclic Redundancy Codes
(CRC)
• Commonly used codes that have good error

detection properties.
• Can catch many error combinations with a small

number of redundant bits
• Based on division of polynomials.

• Errors can be viewed as adding terms to the polynomial
• Should be unlikely that the division will still work

• Can be implemented very efficiently in hardware.
• Examples:

• CRC-32: Ethernet
• CRC-8, CRC-10, CRC-32: ATM

30

CRC: Basic idea

• Treat bit strings as polynomials:
1 0 1 1 1
X4+ X2+X1+X0

• Sender and Receiver agree on a divisor polynomial
of degree k

• Message of M bits  send M+k bits
• No errors if M+k is divisible by divisor polynomial
• If you pick the right divisor you can:

• Detect all 1 & 2-bit errors
• Any odd number of errors
• All Burst errors of less than k bits
• Some burst errors >= k bits

31

Outline

• Encoding
• Bits to digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

32

Link Flow Control and
Error Recovery

• Dealing with receiver overflow: flow control.
• Dealing with packet loss and corruption: error control.
• Meta-comment: these issues are relevant at many

layers.
• Link layer: sender and receiver attached to the same “wire”
• End-to-end: transmission control protocol (TCP) - sender

and receiver are the end points of a connection
• How can we implement flow control?

• “You may send” (windows, stop-and-wait, etc.)
• “Please shut up” (source quench, 802.3x pause frames, etc.)
• Where are each of these appropriate?

33

9

A Naïve Protocol

• Sender simply sends to the receiver whenever it
has packets.

• Potential problem: sender can outrun the receiver.
• Receiver too slow, buffer overflow, ..

• Not always a problem: receiver might be fast
enough.

Sender Receiver

34

Adding Flow Control

• Stop and wait flow control: sender waits to send
the next packet until the previous packet has been
acknowledged by the receiver.
• Receiver can pace the receiver

Sender Receiver

35

Drawback: Performance

Sender

Receiver
Time

Max Throughput = 1 pkt
Roundtrip Time

RTT

36

Window Flow Control

• Stop and wait flow control results in poor throughput
for long-delay paths: packet size/ roundtrip-time.

• Solution: receiver provides sender with a window that
it can fill with packets.
• The window is backed up by buffer space on receiver
• Receiver acknowledges the a packet every time a packet is

consumed and a buffer is freed

Sender Receiver

37

10

Bandwidth-Delay Product

Sender

Receiver
Time

Max Throughput = Window Size
Roundtrip Time

RTT

38

Error Recovery

• Two forms of error recovery
• Error Correcting Codes (ECC)
• Automatic Repeat Request (ARQ)

• ECC
• Send extra redundant data to help repair losses

• ARQ
• Receiver sends acknowledgement (ACK) when it

receives packet
• Sender uses ACKs to identify and resend data that was

lost

• Which should we use? Why? When?

39

40

Stop and Wait

Time

Ti
m

eo
ut

• Simplest ARQ
protocol

• Send a packet,
stop and wait until
acknowledgement
arrives

• Will examine ARQ
issues later in
semester

Sender Receiver

41

Recovering from Error

Ti
m

eo
ut

Ti
m

eo
ut

Time

Ti
m

eo
ut

Packet lost

Ti
m

eo
ut

Early timeout

Ti
m

eo
ut

Ti
m

eo
ut

ACK lost

11

How to Recognize
Retransmissions?

• Use sequence numbers
• both packets and acks

• Sequence # in packet is
finite  How big should it
be?
• For stop and wait?

• One bit – won’t send seq #1
until received ACK for seq
#0

42

Implementation Issues with
Window-based Protocol

• Window size: # of total outstanding packets that
sender can send without acknowledged

• How big a sequence number do we need?
• For m-bit sequence number: Ws = 2m-1
• Reason: if window could be 2m, then if the first packet in

a window is lost, the receiver cannot not distinguish a
retransmission from a new packet

• How to deal with sequence number wrap around?
• Use unsigned arithmetic, modulo 2m

43

6-44

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
0

fr
1

fr
2

fr
3

A
C
K
1

M = 22 = 4, Go-Back - 4:

A
C
K
0

A
C
K
2

A
C
K
3

Transmitter goes back 4

Receiver has Rnext= 0, but it does not
know whether its ACK for frame 0 was
received, so it does not know whether
this is the old frame 0 or a new frame 0

Maximum Allowable Window Size is Ws = 2m-1

Rnext 0 1 2 3 0

A

B

fr
0

Timefr
1

fr
2

fr
0

fr
1

fr
2

A
C
K
1

M = 22 = 4, Go-Back-3:

A
C
K
2

A
C
K
3

Transmitter goes back 3

Receiver has Rnext= 3 , so it
rejects the old frame 0

Rnext 0 1 2 3

What is Used in Practice?

• No flow or error control.
• E.g. regular Ethernet, just uses CRC for error detection

• Flow control only
• E.g. Gigabit Ethernet

• Flow and error control.
• E.g. X.25 (older connection-based service at 64 Kbs

that guarantees reliable in order delivery of data)

• Flow and error control solutions also used in
higher layer protocols
• E.g., TCP for end-to-end flow and error control

45

