

15-441 Computer Networking

Lecture 1 – Introduction
Peter Steenkiste

Fall 2013
www.cs.cmu.edu/~prs/15-441-F13

1

Today's Lecture

- Administrivia
- Whirlwind tour of networking
- Protocol stacks

2

Teaching Staff

- Instructors.
 - Peter Steenkiste
 - Eric Andersen
- Teaching assistants.
 - Matt Mukerjee
 - David Naylor
 - Ben Wasserman
- staff-441@cs.cmu.edu → course staff
 - Please use this instead of emailing just one of us!
- Office hours and contact information on the web site.

3

Course Goals

- Become familiar with the principles and practice of data networking
 - Routing, transport protocols, naming, ...
 - Design of networks and services
- Learn how to write applications that use the network
 - A web server
 - Optimizing application performance
- Get some understanding about network internals in a hands-on way
 - TCP-style reliable congestion control

4

Course Format

- ~30 lectures
 - Cover the “principles and practice”
 - Complete readings before lecture
- 4 homework assignments
 - “Paper”: Do you understand and can you apply the material?
 - “Lab”: Illustrate networking concepts
 - Teach networking concepts/tools
 - Preparation for midterm and final
- 3 programming projects
 - How to use and build networks / networked applications
 - Application-layer programming; include key ideas from kernel
 - Larger, open-ended group projects. *Start early!*
- Midterm and final
 - Emphasis on understanding of course material

5

Recitation Sections

- Key 441 objective: system programming - C
- Different from what you’ve done before!
 - Often designed to run indefinitely. Handle all errors!
 - Must be secure
 - Interfaces specified by documented protocols
 - Concurrency involved (inter and intra-machine)
 - Must have good test methods
- Recitations address this
 - “A system hackers’ view of software engineering”
 - Help develop practical needed in projects (and beyond)
- Recitations are only one hours long!

6

Projects

- 3 projects: implementing application and network level functionality
 - First project: web server solo
 - Later projects: teams of two; hope to do something involving video
- Plan to use google group for communication
- Must use version control – git:
 - Creating andrew directories for everyone

7

Sounds Great! How Do I Get In?

- Currently about 80 people are enrolled – there is no waiting list.
 - If you do not plan to take the course, please drop it ASAP
 - While nobody is waiting for your slot, it helps in preparing projects, handouts, ...

8

Administrative Stuff

- Watch the course web page
 - <http://www.cs.cmu.edu/~prs/15-441-F13/>
 - Handouts, readings, ..
 - Always check here first
- Office hours posted on web page
 - Make an appointment if you have a conflict
- Course secretary
 - Kathy McNiff, Gates 9213
 - Pick up graded assignments, ...

9

Grading

- Roughly equal weight in projects and testing
 - 45% for Projects I, II and III
 - 15% for Midterm exam
 - 25% for Final exam
 - 15% for Homework
- You **MUST** demonstrate competence in both projects and tests to pass the course
 - Fail either and you fail the class!

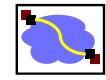
10

Policy on Collaboration

- Working together is important
 - Discuss course material in general terms
 - Work together on program debugging, ..
 - Final submission must be your own work
 - Homeworks, midterm, final
- Projects: Solo (P1) + Teams of two (P2,P3)
 - Collaboration, group project skills
 - Both students should understand the entire project
- Web page has details, e.g., university policy, etc.
- Things we don't want to have to say: We run projects through cheat-checkers against all previously and concurrently handed in versions...

11

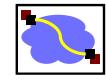
Late Work and Regrading


- Late work will receive a 15% penalty/day
 - No assignment can be more than 2 days late
 - Only exceptions are documented illness and family emergencies
- Requests for regrading must be submitted in writing to course secretary within 2 weeks.
 - Do not contact us by e-mail
 - Office hours are fine for discussion but not for regrading
 - Regrading will be done by original grader
- No assignments with a “short fuse”
 - Homeworks: ~1-2 weeks - Projects: ~4 weeks
 - Start on time!
 - Every year some students discover that a 4 week project cannot be completed in a week

12

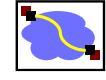
The Slides

- The slides are a resource that is shared by the many instructors of 15-441
 - Also some sharing with 18-345
- They include contributions from Peter Steenkiste, Srini Seshan, Dave Andersen, Hui Zhang, Eric Anderson, and others


13

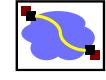
Today's Lecture

- Administrivia
- Whirlwind tour of networking
- Protocol stacks


14

This Week

- Intro – what is the course all about?
- Protocol stacks and layering
- Recitations start this week: Git version control
- Next recitation: review of sockets
 - 213 review, but not quite
- On to the good stuff...Whirlwind tour of networking
 - Course outline:
 - Low-level (physical, link, circuits, etc.)
 - Internet core concepts (addressing, routing, DNS)
 - Advanced topics


15

What is the Objective of Networking?

- Enable communication between applications on different computers
 - Web, peer-to-peer, video streaming, distributed processing, video and audio conferencing, ...
- Over very diverse infrastructures
 - The "Internet", WiFi and cellular, data center networks, corporate networks, dedicated private networks, ...
- Must understand application needs/demands (Lecture 3)
 - Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - Delay sensitivity
 - Loss sensitivity

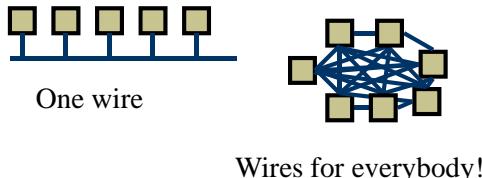
16

What Is a Network?

- Collection of nodes and links that connect them
- This is vague. Why? Consider different networks:
 - Internet
 - Telephone
 - TV delivery
 - Your house
 - Others – sensor nets, cellular, WiFi, ...
- The course focuses on the Internet, but the Internet is very diverse, and ..
- Almost everything runs over the Internet!

17

Basic Building Block: Links



- Electrical questions
 - Voltage, frequency, ...
 - Or maybe it is optical or wireless?
 - Touched on very lightly in this course: build some intuition
- Link-layer issues: How to send data over a link?
 - When to talk – can either side talk at once?
 - What to say – low-level format of the bits and packets?
- Okay... what about more nodes?

19

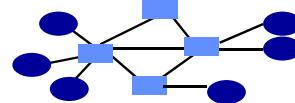
Basic Building Block: Links

- ... But what if we want more hosts?

- Scalability?!

- 10^x nodes, for $x: 1 \rightarrow \infty$

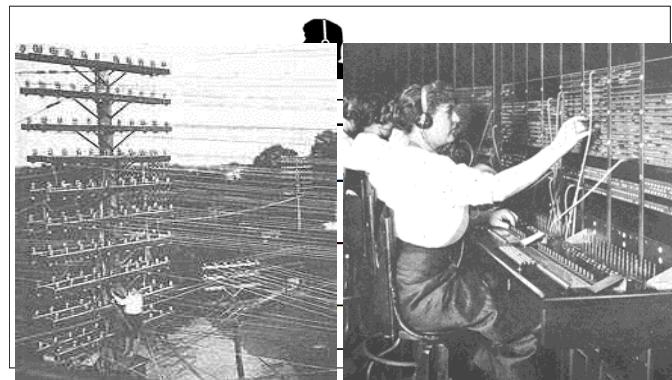
20


Local Area Networks (LANs)

- Benefits of being “local”:
 - Lower cost
 - Efficiency (usually) less pressing
 - Short distance = low latency
 - One management domain
- Today’s technology: Ethernet++
- But not all Ethernets are the same
 - Today’s ethernet versus traditional ethernet
 - Wired versus wireless
 - Campus network versus data center
- And then there is cellular ...

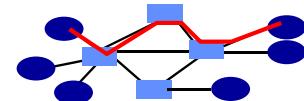
21

Multiplexing


- Need to share network resources

- How? Switched network
 - Party "A" gets resources sometimes
 - Party "B" gets them sometimes
- Interior nodes act as "Switches"
- What mechanisms to share resources?

22

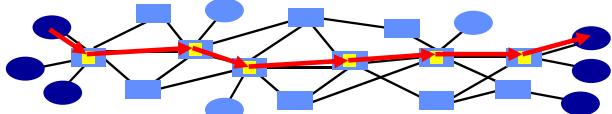

Back in the Old Days...

23

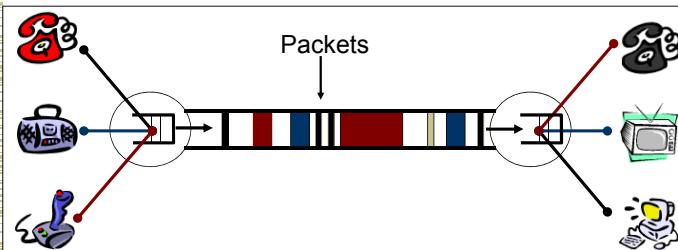
Circuit Switching

- Source first establishes a connection (circuit) to the destination
 - Each switch along the way stores info about connection (and possibly allocates resources)
- Source sends the data over the circuit
 - No need to include the destination address with the data since the switches know the path
- The connection is explicitly torn down
- Example: telephone network (analog)

24


Circuit Switching Discussion

- Circuits have some very attractive properties.
 - Fast and simple data transfer, once the circuit has been established
 - Predictable performance since the circuit provides isolation from other users
 - E.g. guaranteed bandwidth
- But it also has some shortcomings.
 - How about bursty traffic
 - Do you need a permanent circuit to Facebook?
 - Circuit will be idle for significant periods of time
 - How about users with different bandwidth needs
 - Do they have to use multiple circuits?
- Alternative: packet switching.

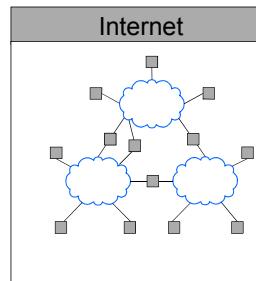

25

Packet Switching (our emphasis)

- Source sends information as self-contained packets that have an address.
 - Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - Switches use the address in the packet to determine how to forward the packets
 - Store and forward
- Analogy: a letter in surface mail.

Packet Switching – Statistical Multiplexing

- Switches arbitrate between inputs
- Can send from *any* input that's ready
 - Links are never idle when there is traffic to send
 - (Efficiency!)


Networks Juggle Many Goals

- Efficiency – resource use; cost
- The “ilities”:
 - Evolvability
 - Managability
 - Security (securability, if you must)
 - Ease of:
 - Deployment
 - Management
 - Creating useful applications
 - Scalability

29

Internet

- An inter-net: a network of networks.
 - Networks are connected using routers that support communication in a hierarchical fashion
 - Often need other special devices at the boundaries for security, accounting, ..
- The Internet: the interconnected set of networks of the Internet Service Providers (ISPs)
 - About 20,000 ISPs make up the Internet
 - Many more “edge” networks

Challenges of the Internet

- Heterogeneity
 - Address formats
 - Performance – bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
 - Diverse network technologies → satellite links, cellular links, carrier pigeons

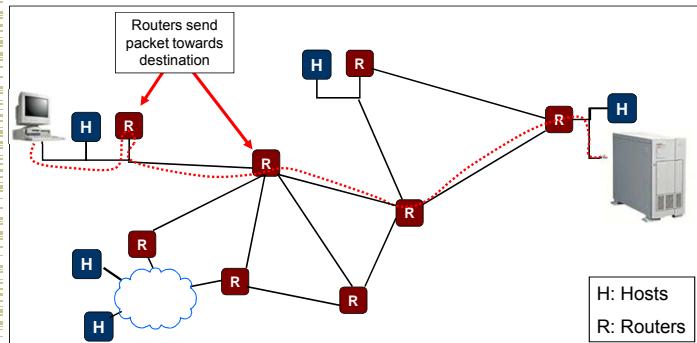
32

Challenges of the Internet

- Scale
 - 100,000,000s of hosts
 - 18,000+ administrative domains,
 - Thousands of applications
- Adversarial environment
- How do we get all these diverse networks to work together?
 - In order to inter-operate, all participating networks have to follow a common set of rules

33

Naming


Computer 1

Local DNS Server

Translates human readable names to logical endpoints

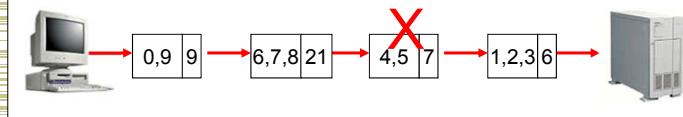
36

Routing

37

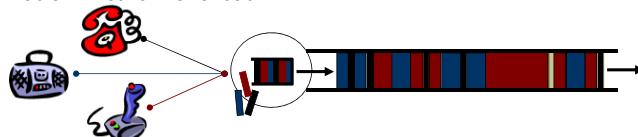
Network Service Model

- What is the *service model*?
 - Internet: *best-effort* – packets can get lost, etc.
- What if you want more?
 - Performance guarantees (QoS)
 - Reliability
 - Corruption
 - Lost packets
 - Flow and congestion control
 - Fragmentation
 - In-order delivery
 - Etc...


38

What if the Data gets Corrupted?

Problem: Data Corruption


Solution: Add a *checksum*

39

What if Network is Overloaded?

Problem: Network Overload

Solution: Buffering and Congestion Control

- Short bursts: buffer
- What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load = resources → "congestion control"

40

What if the Data gets Lost?

Problem: Lost Data

Solution: Timeout and Retransmit

41

Course Content

- Intro, applications, protocol stacks, ...
- Key network components: physical layers, datalink, IP, transport protocols
- Miscellaneous topics: security, wireless and mobility, peer-peer, the Web, video, some research, etc.
- Changes relative to previous years:
 - Reduce details in the key network components
 - Add material on actual apps and deployments

44

Meeting Application Demands

- Sometimes interior of the network can do it
 - E.g., Quality of Service
 - Benefits of circuit switching in packet-switched net
 - Hard in the Internet, easy in restricted contexts
- OR hosts can do it
 - E.g., end-to-end *Transport protocols*
 - TCP performs end-to-end retransmission of lost packets to give the illusion of a reliable underlying network.

46

Networks [including end points] Implement Many Functions

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Etc....

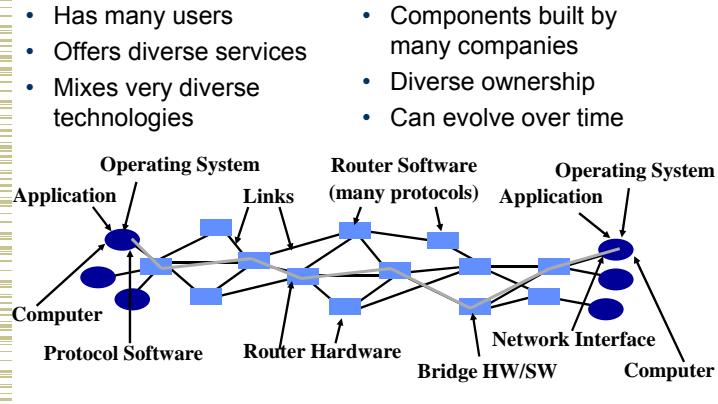
How do we
implement all this?
(without making a mess)

45

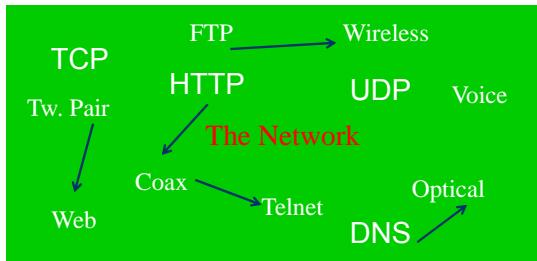
Next Lecture

- How to determine split of functionality
 - Across protocol layers (more in a few minutes)
 - Across network nodes
- Read two papers on the motivations for the Internet architecture (web site):
 - “The design philosophy of the DARPA Internet Protocols”, Dave Clark, SIGCOMM 88
 - “End-to-end arguments in system design”, Saltzer, Reed, and Clark, ACM Transactions on Computer Systems, November 1984

47

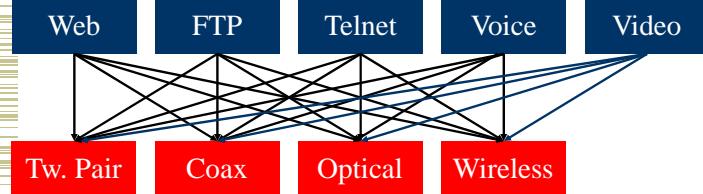


Today's Lecture

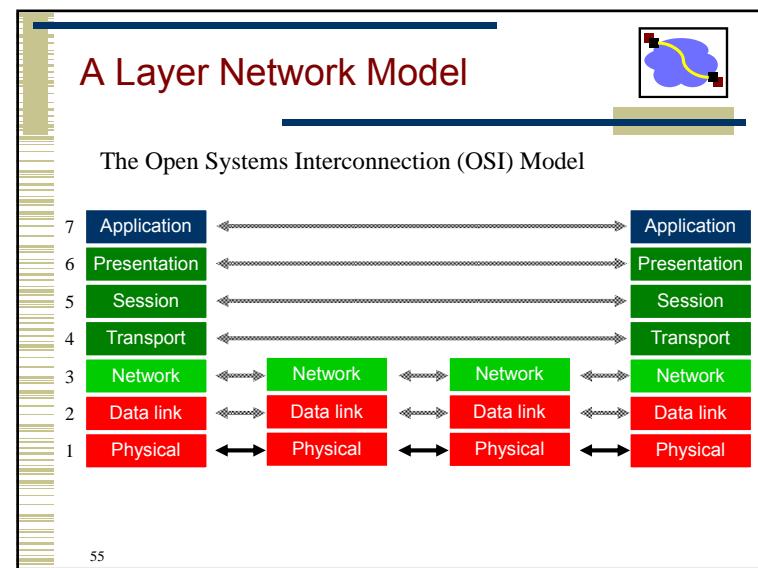
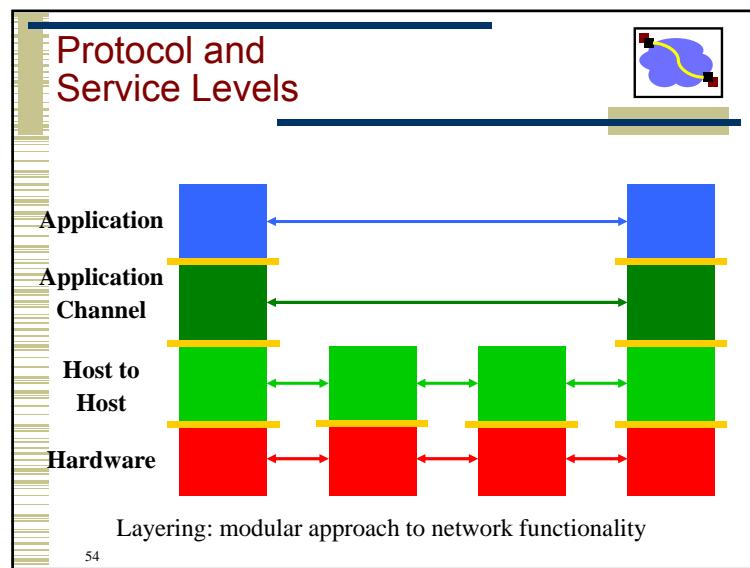
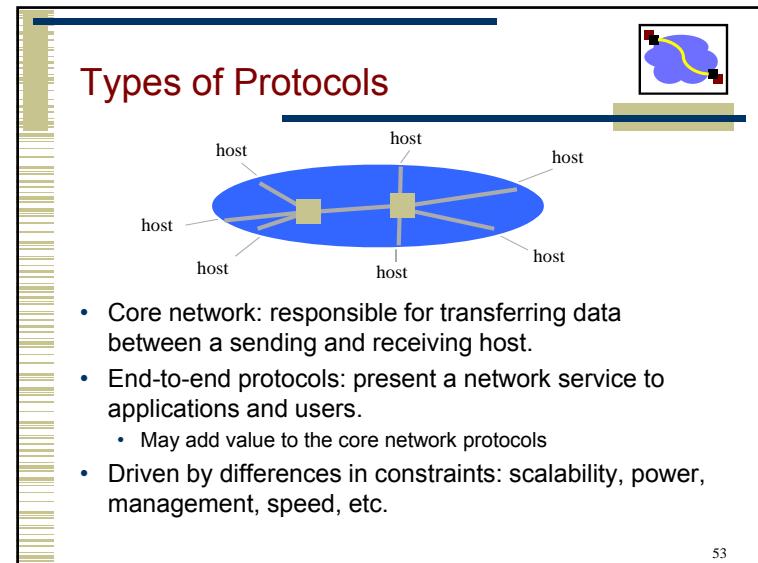
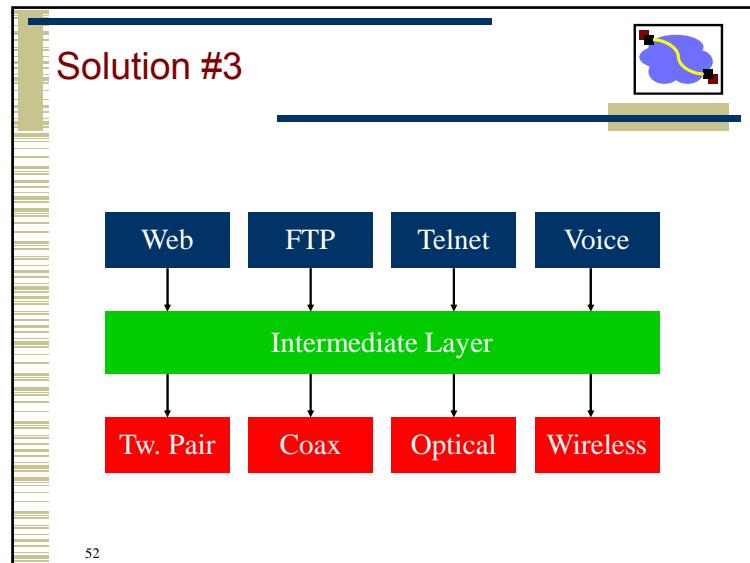

- Administrivia
- Whirlwind tour of networking
- **Protocol stacks**

48

How to Design a Network?



Solution #1

50

Solution #2?

51

OSI Model: 7 Protocol Layers

- Physical: how to transmit bits
- Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end
- Session: how to tie flows together
- Presentation: byte ordering, security
- Application: everything else

• TCP/IP has been amazingly successful, and it is not based on a rigid OSI model. The OSI model has been very successful at shaping thought

56