15-441: Computer Networks
Project 3: Congestion Control with Bittorrent

Lead TA: Wittawat Tantisirirowtantisi@cs.cmu.edt

Assigned: November 4, 2010
Checkpoint 1 due: November 10, 2010
Checkpoint 2 due: November 15, 2010
Checkpoint 3 due: November 19, 2010
Checkpoint 4 due: November 23, 2010
Final version due: December 2, 2010

1 Overview

In this assignment, you will implement a BitTorrent-likeefilransfer application. The application will run on top of
UDP, and you will need to implement a reliability and congastontrol protocol (similar to TCP) for the application.
The application will be able to simultaneously downloadatiént parts, called “chunks”, of a file from different
servers. Please remember to read the complete assignnmeluiuttenore than onceso that you know exactly what is
being provided and what functionality you are expected th &toject documents, FAQ, and starter files are at:

http://www.cs.cmu.edu/ ~ prs/15-441-F10/assignments.html

This is a group project and you must find exactly one partneottx with. We assume that you will keep working
with your Project 2 partner. If you plan to change your partner, email wtantisi@cs.cuwl with the names of the
two people in your group and your andrew logins. U$8441 GROUP as the subject line. If you can't find a partner
start by posting on the bboard.

1.1 Help Sessions, Checkpoints and Deadlines

The timeline for the project is below, including several ckmoints. To help you pace your work, remember that
checkpoints represent a date by which you should easily t@wpleted the required functionality. Given the timeline,
you can see that this means you should get started now! Tdpddity is explained on the course website.

Date Description

November 4 | Assignment handed ouPLEASE START RIGHT AWAY!

November 10| Checkpoint 1: WHOHAS flooding and IHAVE responses

November 15| Checkpoint 22 Simple Chunk Download with stop-and-wait

November 19| Checkpiont 3: Sliding window flow-control with reliability

November 23| Checkpoint 4: Simple Congestion Avoidance, with cwnd = 1 after any loss
December 2 | Deadline by 11:59 P.M.

There are foumandatorycheckpoints. Each checkpoint is worth 10 points.

http://www.cs.cmu.edu/~prs/15-441-F10/assignments.html

Original File

Chunks

N
Hash) — }

".torrent" =

Figure 1. Diagram of bittorrent chunking and torrents: &itent takes a large file and breaks it down into separate
chunks which can be downloaded from different “peers”. (Msuare identified by a “hash-value”, which is the result
of computing a well-known hash function over the data in thenk. When a client wants to download a file, it first
grabs a “torrent” file, which contains all of the hash valuasthe desired data file. The torrent lets the client know
what chunks to request from other peers in the network.

2 Where to get help

A big part of being a good programmer is learning how to beuwsseful during the development process. The first
places to look for help are (1) carefully re-reading the grasient, (2) looking at the project 3 website for updates
and the FAQ, (3) scanning previous bulletin board posts,(dhdoogling any standard compiler or script error mes-
sages. If you still have a question AFTER doing this, gengualstions should be posted to the class bulletin board,
academic.cs.15-441.discussie will be happy to help. If you have more specific questicespécially ones that
require us to look at your code), please drop by office hours.

3 Project Outline

During the course of this project, you will do the following:
e Implement a BitTorrent-like protocol to search for peerd download/upload file parts.

e Implement flow control and congestion control mechanismengure fair and efficient network utilization.

4 Project specification

4.1 Background

This project is loosely based on the BitTorrent Peer-torlPR2P) file transfer protocol. In a traditional file transfer
application, the client knows which server has the file, atls a request to that specific server for the given file. In
many P2P file transfer applications, the actoahtionof the file is unknown, and the file may be present at multiple
locations. The client first sends a query to discover whictisofnany peers have the file it wants, and then retrieves
the file from one or more of these peers.

While P2P services had already become commonplace, Bitfomgoduced some new concepts that made it
really popular. Firstly BitTorrent splits the file into déffent “chunks”. Each chunk can be downloaded independently
of the others, and then the entire collection of chunks issembled into the file. In this assignment, you will be using
a fixed-size chunk of 512 Kbytes.

BitTorrent uses a central “tracker” that tracks which péenge which chunks of a file. A client begins a download
by first obtaining a “.torrent” file, which lists the informah about each chunk of the file. A chunk is identified by the
cryptographic hash of its contents; after a client has doaagéd a chunk, it must compute the cryptographic hash to
determine whether it obtained the right chunk or not. Sear€id.

To download a particular chunk, the receiving peer obtaiom fthe tracker a list of peers that contain the chunk,
and then directly contacts one of those peers to begin thaldad. BitTorrent uses a “rarest-chunk-first” heuristic
where it tries to fetch the rarest chunk first. The peer camitoad/upload four different chunks in parallel.

You can read more about the BitTorrent protocol details fhttp://www.bittorrent.org/beps/bep_
0003.html . Bram Cohen, its originator also wrote a paper on the deségistns behind BitTorrent. The paper is
available ahttp://www.bittorrent.org/bittorrentecon.pdf

This project departs from real BitTorrent in several ways:

¢ Instead of implementing a tracker server, your peers withdlthe network to find which peers have which
chunks of a file. Each peer will know the identities of everiastpeer in the network; you do not have to
implement routing.

e To simplify set-up and testing, all file data is actually e&s®l from a single “master data file". Peers are
configured with a file to tell them what chunks from this fileytfewn” upon startup.

e You do not have to implement BitTorrent’s incentive basedinamism to encourage good uploaders and dis-
courage bad ones.

But the project adds one complexity: BitTorrent obtainsrdtsuusing TCP. Your application will obtain them
usingUDP, and you will have to implement congestion control and kélity. It is a good idea to review congestion
control concepts, particularly TCP, from both lecture amgltextbook (Peterson & Davie Section 6.3).

4.2 Programming Guidelines

Your peer must be written in the C programming language, ne @+STL is allowed. You must use UDP for all the
communication for control and data transfer. Your code nsostpile and run correctly on andrew linux machines.
Refer to slides from past recitations on designing moduwaec editing makefiles, using subversion, and debugging.
As with project 1, your implementation should be singlestded.

For network programming, you are not allowed to use any costocket classes. We will provide a hashing
library, and you may use public code for basic data strusturet not any code performing higher-level functionality.
These guidelines are similar to project 1, except that yoy freely use any code from your projectl (even if you
switched partners). However, all code you do not freshlyenior this assignment must be clearly documented in the
README.

4.3 Provided Files
Your starter code includes:
e hupsim.pl - This file emulates a network topology using topo.map (seti@e7)
e sha.[ch] - The SHA-1 hash generator
e input _buffer.[ch] - Handle user input
e debug.[ch] - helpful utilities for debugging output
e bt _parse.[ch] - utilities for parsing commandline arguments.
e peer.c - A skeleton peer file. Handles some of the setup and progg&silyou.
e nodes.map - provides the list of peers in the network

e topo.map -the hidden network topology used by hupsim.pl. This shbelthterpreted only by the hupsim.pl,
your code shouldot read this file. You may need to modify this file when using hoppl to test the congestion
avoidance part of your program.

e make-chunks - program to create new chunk files given an input file thata@iostchunk-id, hash pairs, useful
for creating more larger file download scenarios.

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/bittorrentecon.pdf

4.4 Terminology

e master-data-file - The input file that contains ALL the datahie network. All nodes will have access to this
file, but a peer should only read the chunks that it “owns”. &mpawvns a chunk if the chunk id and hash was
listed in that peer’s has-chunk-file.

e master-chunk-file - A file that lists the chunk IDs and cormeging hashes for the chunks in the master data
file.

e peer-list-file - A file containing list of all the peers in thetavork. For a sample of the peer-list-file, please look
at nodes.map.

e has-chunk-file - A per-node file containing list of chunkstthgarticular node has at startup. However, a peers
will have access to more chunks as they download the chuoksdther peers in the network.

e get-chunk-file - A file containing the list of chunk ids and has a peer wants to download. This filename is
provided by the user when requesting a new download.

e max-downloads - The maximum number of simultaneous coiorectllowed in each direction (download /
upload)

e peer-identity - The identity of the current peer. This sldoloé used by the peer to get its hostname and port
from peer-list-file

e debug-level - The level of debug statements that should inéeprout by DPRINTF(). For more information,
please look atlebug.[h,c]

4.5 How the file transfer works

The code you write should produce an executable file namest™p€&he command line options for the program are :

peer -p <peer-list-file> -c <has-chunk-file> -m <max-down loads>
-i <peer-identity> -f <master-chunk-file> -d <debug-leve >

The peer program listens on standard input for commandstieraser. The only command is “GEJget-chunk-
file> <output filename-". This instruction from the user should cause your programygen the specified chunks file
and attempt to download all of the chunks listed in it (you aasume the file names contain no spaces). When your
program finishes downloading the specified file, it shouldtGOT <get-chunk-file=" on a line by itself. You do
not have to handle multiple concurrent file requests fromuges. Our test code will not send another GET command
until the first has completed; you're welcome to do whatewar want internally. The format of different files are
given in Section 4.7.

To find hosts to download from, the requesting peer sends a “Wi®<list>" request to all other peers, where
<list> is the list of chunk hashes it wants to download. The list Sjgscthe SHA-1 hashes of the chunks it wants
to retrieve. The entire list may be too large to fit into a singDP packet. You should assume the maximum packet
size for UDP as 1500 bytes. The peer must split the list intttipte WHOHAS queries if the list is too large for a
single packet. Chunk hashes have a fixed length of 20 byt#se ffle is too large, your client may send out the GET
requests iteratively, waiting for responses to a GET rettpielunks to be downloaded before continuing. For better
performance, your client should send these requests ifiglara

Upon receipt of a WHOHAS query, a peer sends back the list ofikdiit contains using the “IHAVE<list>"
reply. The list again contains the list of hashes for chubka$. Since the request was made to fit into one packet, the
response is guaranteed to fit into a single packet.

The requesting peer looks at all IHAVE replies and decideishviemote peer to fetch each of the chunks from. It
then downloads each chunk individually using “GEThunk-hask-" requests. Because you are using UDP, you can
think of a “GET” request as combining the function of an apgtion-layer “GET” requesinda the connection-setup
function of a TCP SYN packet.

Packet Type| C
WHOHAS | 0
IHAVE 1
GET 2
3
4
5

DATA
ACK
DENIED

Table 1: Codes for different packet types.

When a peer receives a GET request for a chunk it owns, it willdeack multiple “DATA’ packets to the
requesting peer (see format below) until the chunk specifieitie GET request has been completely transferred.
These DATA packets are subject to congestion control, dmedtin Section 6.2. The peer may not be able to satisfy
the GET request if it is already serving maximum number oEptheers. The peer can ignore the request or queue
them up or notify the requester about its inability to sehe particular request. Sending this notification is optiona
and uses the DENIED code. Each peer can only have 1 simuliartemvnload from any other peer in the network,
meaning that the IP address and port in the UDP packet wiuely determine which download a DATA packet
belongs to. Each peer can however have parallel downloadsgach) from other peers.

When a peer receives a DATA packet it sends back an ACK packifietsender to notify that it successfully
received the packet. Receivers should acknowledge all D#dekets.

4.6 Packet Formats

All the communication between the peers use UDP as the wmagnbrotocol. All packets begin with a common
header:

Magic Number [2 bytes]
Version Number [1 byte]
Packet Type [1 byte]

Header Length [2 bytes]
Total Packet Length [2 bytes]

Sequence Number [4 bytes]

N oo gk~ w bdh e

Acknowledgment Number [4 bytes]

Just like in the previous assignment, all multi-byte intefiglds must be transmitted in network byte order (the
magic number, the lengths, and the sequence/acknowledgmetbers). Also, all integers must be unsigned.

The magic number should be 15441, and the version numbeldshel. Peers should drop packets that do not
have these values. The “Packet Type” field determines wimak &f payload the peer should expect. The codes for
different packet types are given in Table 1. By changing tredler length, the peers can provide custom optimizations
for all the packets (if you choose). Sequence number and dwladgment number are used for congestion control
mechanisms similar to TCP as well as reliable transmission.

If you extend the header length, please begin your extendaddr with a two-byte “extension ID” field set to your
group’s number, to ensure that you can interoperate clewsittyother people’s clients. Similarly, if your peer recesv
an extended header and the extension ID does not match yamup gumber, just ignore the extensions.

The payload for both WHOHAS and IHAVE contain the number of dhihashes (1 byte), 3 bytes of empty
padding space to keep the chunk 32-bit aligned, and theflisashes (20 bytes each) in them. The format of the

4 bytes

} } | 4 bytes ‘
f 1
15441 1 0 15441 1 3
16
60 16 1016
invalid "
4 bytes invalid . .
l l invalid
2 padding
Magic Version Type
Chunk Hash #1 (20 bytes
Header Len Packet Len (Z00VES) Chunk Data (1000 bytes)
Seq Num
Chunk Hash #2 (20 bytes)
Ack Num

(a) The basic packet header, with eaclb) A full WHOHAS request withtwo (c) A full DATA packet, with seq

header field named. Chunk hashes in the request. Note thatumber 24 and 1000 bytes of data.
both seq num and ack num have ndNote that the ack num has no meaning
meaning in this packet. because data-flow is one-way.

Figure 2: Packet headers.

packet is shown in Figufe 2(b). The payload of GET packeténewore simple: it contains only the chunk hash for
the chunk the client wants to fetch (20 bytes).

Figure| 2(c) shows an example DATA packet. DATA and ACK pasld not have any payload format defined,;
normally they should just contain file data. The sequencebaurand acknowledgment number fields in the header
have meaning only in DATA and ACK packets. In this project eguence numbers always start from 1 for a new
“GET connection”. A receiving peer should send an ACK packith acknowledgment number 1 to acknowledge
that is has received the data packet with sequence numbersoaon. Even though there are both a sequence number
and an acknowledgment number fields in the heagwrr,should not combine DATA and ACK packé&® not use a
DATA packet to acknowledge a previous packet and do not satadid a ACK packet. This means that for any DATA
packet the ACK num will be invalid and for any ACK packet theGEum field will be invalid. Invalid fields still take
up space in the packet header, but their value should beadrxyrthe peer receiving the packet.

4.7 File Formats
Chunks File:

File: <path to the file which needs sharing>
Chunks:
id chunk-hash

The master-chunks-filaas above format. The first line specifies the file that neete &hared among the peers.
The peer should only read the chunks it is provided with ingber'shas-chunks-filparameter. All the chunks have
a fixed size of 512KB. If the file size is not a multiple of 512K it will be padded appropriately.

All lines after “Chunks:” contain chunk ids and the corresgimg hash value of the chunk. The hash is the SHA-1
hash of the chunk, represented as a hexadecimal numbeil {ioivhave a starting “0x”). The chunk id is a decimal
integer, specifying the offset of the chunk in the masteadi&. If the chunk id ig, then the chunk’s content starts at
an offset ofi x 512k bytes into the master data file.

Has Chunk File

This file contains a list of the ids and hashes of the chunkstecpar peer has. As in the master chunk file, the ids are
in decimal format and hashes are in hexadecimal format.Heosame chunk, the id of the chunk in the has-chunk-file
will be the same as the id of that chunk in the master-churés-fi

id chunk-hash
id chunk-hash

Get Chunk File

The format of the file is exactly same as the has-chunk-fileoiitains a list of the ids and hashes the peer wishes to
download. As in the master chunk file, the ids in decimal fdraral hashes are in hexadecimal format. For the same
chunk of data, the id in the get-chunk-file might NOT be the sa@® the id of that chunk in the master-chunks-file.
Rather, the id here refers to the position of the chunk in fealiat the user wants to save to.

id chunk-hash
id chunk-hash

Peer List File
This file contains the list of all peers in the network. Theiat of each line is:

<id> <peer-address> <peer-port>

Theid is a decimal numbelpeer-addresghe IP address in dotted decimal format, and ploet is port integer in
decimal. It will be easiest to just run all hosts on differkmalhost ports.

5 Example

Assume you have two images A.gif and B.gif you want to sharbesg two files are available in the ‘example’
subdirectory of the code. Wa&rongly suggest that you walk through these steps as you read therdento get a
better understanding of what each file contains (the haskesah this document are not the actual hash values, to
improve readability).

First, create two files whose sizes are multiple of 512K, gisin

tar cf - A.gif | dd of=/tmp/A.tar bs=512K conv=sync count=2
tar cf - B.gif | dd of=/tmp/B.tar bs=512K conv=sync count=2

With padding, A.tar and B.tar are exactly 1MB big (ie: 2 chatdng).

Let’s run two nodes, one on port 1111 and one on port 2222

Suppose that the SHA-1 hash of the first 512KB of A.tar is OxD# the second 512KB is OxAD. Similarly, for
B.tar the 0-512KB chunk hash is 0x15 and the 512KB-1MB chuashhis 0x441.

First, do the following:

cat /tmp/A.tar /tmp/B.tar > /tmp/C.tar

make-chunks /tmp/C.tar > /tmp/C.chunks
make-chunks /tmp/A.tar > /tmp/A.chunks
make-chunks /tmp/B.tar > /tmp/B.chunks

This will create thenaster data filat /tmp/C.tar. The contents of C.chunks will be:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad
2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Recall that ids are in decimal format, while the hash is inddecimal.The contents of A.chunks will be:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad

The contents of B.chunks will be:

0 0000000000000000000000000000000000000015
1 0000000000000000000000000000000000000441

Next, edit the C.chunks file to add two lines and save this am6terchunks:

File: tmp/C.tar

Chunks:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad
2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Next create a peer file called /tmp/nodes.map It should gonta

1 127.0.0.1 1111
2 127.0.0.1 2222

Finally, you need to create files that describe the initiaitent of each node. Let node 1 have all of file A.tar and none
of file B.tar. Let node 2 have all of file B.tar and none of A.tar.
Create a file /tmp/A.haschunks whose contents are:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad

Create a file /tmp/B.haschunks whose contents are:

2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Note that the ids in the above two files are obtained from C.madsterks, which in turn refers to the offset in the
master data file.
Now, to run node 1, type:

peer -p /tmp/nodes.map -c¢ /tmp/A.haschunks -f /tmp/C.mast erchunks -m 4 -i 1
and to run node 2, type in a different terminal:
peer -p /tmp/nodes.map -c¢ /tmp/B.haschunks -f /tmp/C.mast erchunks -m 4 -i 2
After the peer for node 1 starts, you can tygET /tmp/B.chunks /tmp/newB.tar . This command tells

your peer to fetch all chunks listed in /tmp/B.chunks andcesie downloaded data chunks to the file /tmp/newB.tar
ordered by the id values in /tmp/B.chunks.

Here is an example of what your code should to do (note thatages are displayed here in plain text, but the
actual packet content will be binary). Node 1 should sef&/elOHAS 2 0000...015 0000..00441" (for
the 2 chunks that are named 00...15 and 00.441) to all the perodes.map. It will get one IHAVE reply from node
2 that has'IHAVE 2 0000...015 0000..00441” . Node 1 should then send a message to Node 2 saying
“GET 0000...015" . Node 2 starts sending Data packets as limited by flow/cdimpesontrol and Node 1

astPacketAvailable

Receiver

LastPacketRead

f f

LastPacketAcked LastPacketSent NextPacketExpected

LastPacketRcvd

Figure 3: Sliding Window

sends ACK packets as it gets them. After the GET completesfiLl2KB has been transferred), Node 1 should then
send a message to Node 2 sayi@&ET 0000...00441" and should perform this transfer as well.

At the end, you should have new file called /tmp/newB.tar. B&kensure you got it right, you can compare this file
with /tmp/B.tar to make sure they are identical (use the tdifk” utility).

In summary, there are basically three chunk descriptiomé&bs (get-chunks, has-chunks and master-chunks) and
a peer list format.

6 Project Tasks

This section details the requirements of the assignmenis Aigh-level outline roughly mirrors the order in which
you should implement functionality.

6.1 Task1-100% Reliability & Sliding Window

The first task is to implement a 100% reliable protocol for fikmsfer (ie: DATA packets) between two peers with
a simple flow-control protocol. Non-Data traffic (WHOHAS, IME, GET packets) does not have to be transmitted
reliably or with flow-control. The peer should be able to séahe network for available chunks and download them
from the peers that have them. All different parts of the filetdd be collected at the requesting peer and their validity
should be ensured before considering the chunks as recefeedcan check the validity of a downloaded chunk by
computing its SHA-1 hash and comparing it against the sgelctfhunk hash.

To start the the project, use a fixed-size windovB gfackets. The sender should not send packets that fall out of
the window. The Figure 3 shows the sliding windows for bottesi The sender slides the window forward when it
gets an ACK for a higher packet number. There is a sequenceenassociated with each packet and the following
constraints are valid for the sender (hint: your peers il want to keep state very similar to that shown here):

Sending side

o LastPacketAcked < LastPacketSent

INote that TCP uses a byte-based sliding window, but youeptajill use a packet-based sliding window. It's a bit simpedo it by packet.
Also, unlike TCP, you only have a sender window, meaning thatlaw size does not need to be communicated in the packet header

o LastPacketSent < LastPacketAvailable
o LastPacketAvailable — LastPacket Acked < WindowSize

e packet betweehast Packet Acked and Last Packet Available must be “buffered” — you can either implement
this by buffering the packets or by being able to regenetamtfrom the datafile.

When the sender sends a data packet it starts a timer for itertwaits for a fixed amount of time to get the ac-
knowledgment for the packet. Whenever the receiver getskepasends an acknowledgment fSext Packet Expected—
1. That is, upon receiving a packet with sequence number =e8rethly would be “ACK 8”, but only if all packets
with sequence numbers less than 8 have already been rec&lvesk are called cumulative acknowledgements. The
sender has two ways to know if the packets it sent did not réseheceiver: either a time-out occurred, or the sender
received “duplicate ACKs."

¢ If the sender sent a packet and did not receive an acknowledgior it before the timer for the packet expired,
it resends the packet.

¢ If the sender sent a packet and received duplicate ackngmlenits, it knows that the next expected packet (at
least) was lost. To avoid confusion from re-ordering, a sedunts a packet lost only after 3 duplicate ACKs
in arow.

If the requesting client receives a IHAVE from a host, andithieshould send a GET to that same host, set a timer
to retransmit the GET after some period of time (less thancbrsds). You should have reasonable mechanisms in
your client to recognize when successive timeouts of DATAG&T traffic indicates that a host has likely crashed.
Your client should then try to download the file from anotheep(reflooding the WHOHAS is fine).

We will test your your basic functionality using a networlptdogy similar to Figure 4(a). A more complicated
topology like Figure 4(b) will be used to test for concurrelswnloads and robustness to crashes, as well as for
measuring performance in the competition. As suggestetdogheckpoints, you can first code-up basic flow control
with a completely loss free virtual network to simplify désgment.

6.2 Task 2 - Congestion control

You should implement a TCP-like congestion control aldoniton top of UDP for all DATA traffic (you don't need
congestion control for WHOHAS, IHAVE, and GET packets). T&GRsian end-to-end congestion control mechanism.
Broadly speaking, the idea of TCP congestion control is &mhesource to determine how much capacity is available
in the network, so it knows how many packets it can safely Haveansit” at the same time. Once a given source has
this many packets in transit, it uses the arrival of an ACK agjaal that one of its packets has left the network, and it
is therefore safe to insert a new packet into the networkawitladding to the level of congestion. By using ACKs to
pace the transmission of packets, TCP is said to be “setkoig.”

TCP Congestion Control mechanism consists of the algostbh$low Start, Congestion Avoidance Fast Re-
transmit and Fast Recovery You can read more about these mechanisms in Peterson & Beaet®n 6.3 .

In the first part of the project, your window size was fixed aa8lets. The task of this second partis to dynamically
determine the ideal window size. When a new connection ibksit@d with a host on another network, the window
is initialized to one packet. Each time an ACK is receive@, Window is increased by one packet. This process is
calledSlow Start. The sender keeps increasing the window size until the fisstis detected or until the window size
reaches the valussthresh(slow-start threshold), after which it enters Congestimidance mode (see below). For
a new connection the ssthresh is set to a very big value—wsdl84 packets. If a packet is lost in slow start, the
sender sets ssthreshitouz (currentwindowsize/2,2), in case the client returns to slow start again during theesam
connection.

Congestion Avoidanceslowly increases the congestion window and backs off at teedign of trouble. In this
mode when new data is acknowledged by the other end, the wist® increases, but the increase is slower than
the Slow Start mode. The increase in window size should beoat one packet each round-trip time (regardless how
many ACKs are received in that RTT). This is in contrast tonS#tart where the window size is incremented for
each ACK. Recall that when the sender rece®ahiplicate ACK packets, you should assume that the packét wit

10

File File

§File

A B A B

(a) A simple scenario that tests most of the required funclitgna (b) An example topology for the speed competition. Peers D and

Peer D has all the chunks in the file. Peer Awants to getthaditaf E between them have the entire file. Peers A, B want to get the

D. In this problem, the file should reach the Peer A, 100% riliabcomplete file. The peers should recognize that A and B are close

Peers themselves should not drop valid packets. together and transfer more chunks between them rather tiimgge
them from D and E. One test might be to first transfer the file to A,
pause, and then have B request the file, to test if A cachedelanti
offers it. A tougher test might have them request the file atlami
times.

Figure 4: Test topologies

sequence number = acknowledgment number + 1 was lost, eggimie out has not occurred. This process is called
Fast Retransmit.

Similar to Slow Start, in Congestion Avoidance if there i®sd in the network (resulting from either a time out, or
duplicate acks), ssthresh is settax(windowsize/2,2). The window size is then set to 1 and the Slow Start process
starts again.

The last mechanism is Fast RecoveYpu do not need to implement Fast Recovery for the projémi can read
up more about these mechanisms from Section 6.3.3 of Pat&rBavie.

6.2.1 Graphing Window Size

Your program must generate a simple output file (named pnublpeer.txt) showing how your window size varies
over time for each chunk download. This will help you debug &st your code, and it will also help us grade
your code. The output format is simple and will work with magix graphing programs likgnuplot Every time a
window size changes, you should print the ID of this conmec{choose something that will be unique for the duration
of the flow), the time in milliseconds since your program begad the new window size. Each column should be
separated by a tab. For example:

f1 45 2
f1 60 3
f1 78 4
f2 84 2
fl 92 5
f2 97 3

You can get a graph input file for a single chunk download ugiegp. For example:

11

grep fl1 problem2-peer.txt > fl.dat

You can then rurgnuploton any andrew machine, which will give you a gnuplot prompi.dfaw a plot of the file
above, use the command:

plot "fl.dat" using 2:3 title 'flow 1' with lines

For more information about how to use gnuplot, bée://www.duke.edu/ ~hpgavin/gnuplot.html

7 Spiffy: Simulating Networks with Loss & Congestion

To test your system, you will need more interesting netwdhet can have loss, delay, and many nodes causing
congestion. To help you with this, we created a simple ndivgamulator called “Spiffy” which runs completely
on your local machine. The simulator is implementedhopsim.pl , which creates a series of links with limited
bandwidth and queue sized between nodes specified by thegdenap (this allows you to test congestion control).
To send packets on your virtual network, change your sepdtatem calls to spiffsendto(). spiffysendto() tags
each packet with the id of the sender, then sends it to thespedified bySPIFFY _ROUTERenvironment variable.
hupsim.pl listens on that port (which needs to be specified when rurtmipgim.pl), and depending on the identity
of the sender, it will route the packet through the networkcsjied bytopo.map and to the correct destination. You
hand spiffysendto() the exact same packet that you would hand to theatdd®DP sendto() call. All packets
should be sent using spiffy and spif§endto().

7.1 hupsim.pl
hupsim.pl has four parameters which you must set.
hupsim.pl -m <topology file> -n <nodes file> -p <listen port > -v <verbosity>

e <topology file>: This is the file containing the configuration of the netwdnktthupsim.pl will create. An
example is given to you aspo.map . The ids in the file should match the ids in theodes file-. The format
is:

src dst bw delay queue-size

The bw is the bandwidth of the link in bits per second. Theyleddahe delay in milliseconds. The queue-size is
in packets. Your code iIMOT allowed to read this file. If you need values for network chtesastics like RTT,
you must infer them from network behavior.

e <nodes file>: This is the file that contains configuration information &irnodes in the network. An example
is given to you amodes.map .

e <listen port>: This is the port thalhupsim.pl will listen to. Therefore, this port should be DIFFERENT ttha
the ports used by the nodes in the network.

e <verbosity>: How much debugging messages you want to see frapsim.pl . This should be an integer
from 1-4. Higher value means more debugging output.
7.2 Spiffy Example

We have created a sample server and client which uses spiffiads messages around as a simple example. The
server.c and client.c files are available on the project itebs

12

http://www.duke.edu/~hpgavin/gnuplot.html

7.2.1 To make:

gcc -c spiffy.c -o spiffy.o
gcc server.c spiffy.o -0 server
gcc client.c spiffy.o -o client

7.2.2 Usage:

usage: ./server <node id> <port>
usage: .client <my node id> <my port> <to port> <magic numbe r>

Since server and client use spiffy, you must specifythede id> and<port> tomatchnodes.map . <magic
number- is a number we put into the packet header and the server witlthe magic number of the packet it receives.

7.2.3 Example run:

This example assumes you did not modify nodes.map or toothad was given.

setenv SPIFFY_ROUTER 127.0.0.1:12345

Jhupsim.pl -m topo.map -n nodes.map -p 12345 -v 0 &
Jserver 1 48001 &

Jclient 2 48002 48001 123

The client will print
Sent MAGIC: 123
and the server will print

MAGIC: 123

8 Grading

This information is subject to change, but will give you atirigvel view of how points will be allocated when grading
this assignment. Notice that many of the points are for bfisicransmission functionality and simple congestion
control. Make sure these work well before moving to more aded functionality or worrying about corner-cases.

e Search for and reliably retrieve files [40 points]: the peer program should be able to search for chunks and
request them from the remote peers. We will test if the oufipeiis exactly the same as the file peers are
sharing. Note, in addition to implementing WHOHAS, IHAVE,(aGET, this section requires reliability to
handle packet loss.

e Basic congestion control [20 points]:The peer should be able to do the basic congestion contrahpiet
menting the basic “Slow Start” and “Congestion Avoidanagidtionality for common cases.

e Support and Utilize Concurrent Transfers [30 points]: The peer should be able to send and retrieve content
from more than one node simultaneously (note: this cda¢anply threads!). Your peers should simultaneously
take advantage of all nodes that have useful data, insteauingly downloading a chunk from one host at a
time.

e Congestion control corner cases [20 points]:The congestion control should be robust. It must handleessu
like lost ACKs, multiple losses, out of order packets, etdd#ionally, it should have Fast Retransmit. We will
stress test your code and look for tricky corner cases.

e Robustness: [10 points]

13

1. Peer crashes Your implementation should be robust to crashing peerd,shiould attempt to download
interrupted chunks from other peers.

2. General robustness Your peer should be resilient to peers that send corrupt, @t.

Note: While robustness is important, do not spend so muchwnreying about corner cases that you do not
complete the main functionality!

e Style [10 points]: Well-structured, well documented, clean code, with weflrd interfaces between compo-
nents. Appropriate use of comments, clearly identifiedaldeis, constants, function names, etc.

In addition to these points, we have assigned 40 points for éhfour checkpoints.

Checkpoint Deadline Description
Checkpoint 1 [10 points] November 10| You must be able to generate WHOHAS queries and correctlypresp
(if needed) with an IHAVE for a simple configuration of two l&s
You can assume that there is no loss in the network.

Checkpoint 2 [10 points] November 15| You must be able to send a GET request and download an entiné& ¢ch
from another peer within a simple two host network. Use a Bmp
stop-and-wait protocol where hosts send a single packétwait for
an ACK before sending anothekgain, assume no network loss.
Checkpoint 3 [10 points] November 19| You must implement sliding window flow control with a windowe
of 8 packets. You must also implement timeouts and retressan
for reliable delivery. Use the spiffy router to test yourwetk with
loss.

Checkpoint 4 [10 points] November 23| Implement simple congestion avoidance. Start the winddwatddize
one, and increase the window one packet for every window t& da
that is acked without a loss. After any loss, reduce the winttoone
packet, and begin again.

Final [130 points] December 2 | You must turn in your project by this date to avoid any pendRgg-
ular late penalty of 10% per day will be deducted if you turryaur
project after this date.

9 Handin

As in projects 1 and 2, code submission for checkpoints aaditial deadline will be done through your subversion
repositories. You will receive an email with your Team#,9oe¥#, and associated password soon after the assignment
is posted. You can check out your subversion repository thighfollowing command where you must change your
Team# to “Team1” for instance:

svn co https://moo.cmcl.cs.cmu.edu/441-f10/svn/Pi®Jeam# — username andrew-id

The grader will check directories in your repository fordjray, which can be created with asvh copy.
e Checkpoint - YOUR REPOSITORY/tags/checkpointl

e Checkpoint 2 YOUR_ REPOSITORY/tags/checkpoint2

e Checkpoint 3- YOUR_ REPOSITORY/tags/checkpoint3

e Checkpoint 4 YOUR_ REPOSITORY/tags/checkpoint4

¢ Final Handin— YOUR_REPOSITORY /tags/final

For checkpoints, you will be expected to have a working Maéeéind whatever source needed to compile a working
binary. Checkpoints that do not compile will NOT be graded. The “final” tag should contain the following files
that implement all required functionality:

14

10

Makefile — Make sure all the variables and paths are set dtyseech that your program compiles in the hand-in
directory. Makefile should build the executable “peer” thats on the andrew machines.

All of your source code files.

readme.txt: File containing a thorough description of ydesign and implementation. If you use any additional
packet headers, please document them here. Include dotatioerof your test cases, any known bugs, and a
sample output of your problem2-peer.txt.

How to succeed in this assignment

Some tips that will help you succeed with this assignmemstHpok back at past recitation slides regarding concepts
like code design, scripting, compilation, debugging angie® control. You should also consider:

Start early! We cannot stress how important it is to start early in a ptojgavill give you more time to think
about the problems, discuss with your colleagues, and asgtigns on bulletinboard. You will be busy with
lots of other work around the end of the semester, so do whatan to lighten to the load now!

Check the bboards and FAQ religiousgyen before you run into a problem! Seeing questions and issues
raised by other groups can help you anticipate and avoichgahie same problelmeforeyou waste your own
time on it.

Get help from course staff. Come to office hours, ask for fitations on the bulletin board. The earlier you
ask for help, the more time we will have to help you. If you aiptate a major problem (partner, code, etc...)
contact well in advance of the next checkpoint.

Modularize: Split the problem into different modules. Tackle one prabkg a time and build on functionality
only once it is completely solid and tested. This reducestimaber of places you have to search to find the
source of a bug. Define the interfaces between the modulesalps you and your partner make progress in
parallel.

Write Unit Tests: Code often has mistakes that are easy to spot when you aréngiamik small units. Write
small “main” function to test drive a very specific part of ttwle and see if that works properly. For small stuff,
you can conditionally compile these tests in the same filehiitlvyou have defined them:

#if TESTING
int main() {

test_foo();
}

#endif
and compile the code in a makefile that includes:

TESTDEFS="-DTESTING=1"

foo_test.o: foo.c Makefile
$(CC) $(TESTDEFS) -c foo.c -0 $@

foo_test: foo_test.o
$(CC) foo_test.o -0 $@

15

Or you can write separate “tekto.c” files that use the functions in the foo file. The advgstto this is that it
also enforces better modularization—your hash table gdeashtable.c, your hashtable tests in tesshtable.c,
and so on.

e Know about TCP: Knowing TCP’s congestion control mechanism will help youalep that part of the project.

e Comment your code. Writing documentation is not a waste of tithmakes the code more readable when you
have come back to it later, and is a good way to communicatetiioughts to your partner (but don’t comment
the obvious— simple code speaks for itself)

GOOD LUCK (and get started) !!!

16

	Overview
	Help Sessions, Checkpoints and Deadlines

	Where to get help
	Project Outline
	Project specification
	Background
	Programming Guidelines
	Provided Files
	Terminology
	How the file transfer works
	Packet Formats
	File Formats

	Example
	Project Tasks
	Task 1 - 100% Reliability & Sliding Window
	Task 2 - Congestion control
	Graphing Window Size

	Spiffy: Simulating Networks with Loss & Congestion
	hupsim.pl
	Spiffy Example
	To make:
	Usage:
	Example run:

	Grading
	Handin
	How to succeed in this assignment

