
1

15-441 Computer Networks

Project 2: IRC Routing

Lead TA: Michael Carl Tschantz <mtschant@cs.cmu.edu>

1 Introduction

 The purpose of this project is to give you experience in developing concurrent network applications.

You will use the BERKELEY SOCKETS API to write an Internet chat server using a subset of the Internet

Relay Chat protocol (IRC)
1
 and implement two different routing protocols so chat messages can be

exchanged between a network of chat servers.

 You will implement a shortest path link state routing protocol. In this protocol, each node in the

network periodically exchanges information with its neighbors so that everyone in the network knows the

best path to take to reach each destination. This is similar to the protocols used in Internet routers. At the

end of this project, you will have your own network of chat servers, which could be used to talk with

users across the world.

2 Logistics

 The tar file for this project can be found at:

http://www.cs.cmu.edu/~prs/15-441-F10/project2/project2.tar.gz

 This is a group project. You must find exactly one partner for this assignment. Bboard is an

excellent channel for looking for partners. In case there are an odd number of people in the class

and you are left out, please contact the lead TA.

 Once you have found a partner, email the lead TA your names and andrew logins so we can

assign a group number to you. Use “15441 GROUP” as the subject line. Please try to be sure you

know who you will work with for the full duration of the project so we can avoid the hassle of

people switching later.

 This is a large project, but not impossible. See the course webpage for a schedule of when parts of

the assignment should be done by.

3 General Overview

The routing daemon will be a separate program from your IRC server. Its purpose is to maintain the

routing state of the network (e.g., build the routing tables or discover the routes to destinations). When the

IRC server wants to send a message to a remote user, it will ask the routing daemon how to get there and

then send the message itself. In other words, the routing daemon does the routing and the IRC server does

the forwarding.
2

1
 http://www.irchelp.org/irchelp/rfc/

2
 In actual routers, and even overlay networks like peer-to-peer file sharing networks, the notion of the separate

routing daemon is atypical. Normally, the forwarding program should keep the forwarding table, not query the route

daemon for each route lookup.

2

Figure 1 – Sample IRC Network

In your implementation, the routing daemon will communicate with other routing daemons (on other

nodes) over a UDP socket to exchange routing state. It will talk to the IRC server that is on the same node

as it via a local TCP socket. The IRC server will talk to other IRC servers via the TCP socket that it also

uses to communicate with clients. It will simply use special server commands. This high level design is

shown in the two large IRC server nodes in Figure 1.

In order to find out about the network topology, each routing daemon will receive a list of

neighboring nodes when it starts. In this project, you can assume that no new nodes or links will ever be

added to the topology after starting, but nodes and links can fail (i.e., crash or go down) during operation

(and may recover after failing).

4 Definitions

Before jumping into the gory details, let us define some terminology.

 node – An IRC server and routing daemon pair running together that is part of the larger network.

In the real world, a node would refer to a single computer, but we can run multiple “virtual”

nodes on the same computer since they can each run on different ports. Each node is identified by

its nodeID.

 nodeID – A unique identifier that identifies a node. This is an unsigned 32-bit integer that is

assigned to each node when its IRC server and routing daemon start up.

 neighbor – Node 1 is a neighbor of node 2 if there is a virtual link between 1 and 2. Each node

obtains a list of its neighbors’ nodeIDs and their routing and forwarding ports at startup.

 destination – An IRC username or nick as a null terminated character string. As per the IRC

RFC, destinations will be at most 9 characters long and may not contain spaces.

 IRC port – The TCP port on the IRC server that talks to clients and other IRC servers.

 forwarding port – Same as IRC port.

3

 routing port – The UDP port on the routing daemon used to exchange routing information with

other routing daemons.

 local port – The TCP port on the routing daemon that is used to exchange information between it

and the local IRC server. For example, when the IRC server wants to find out the route to remote

user, it queries the routing daemon on this port. The socket open for listening will be on the

routing daemon. The IRC server will connect to it.

 OSPF – The shortest path link state algorithm that inspires the (much simpler) algorithm you will

implement

 routing table – The data structure used to store the “next hops” that packet should take used in

OSPF.

5 Link-State Routing Protocol

5.1 Basic Operation

You will implement a link-state routing protocol similar to OSPF, which is described in the textbook

in chapter 4, and in more detail in the OSPF RFC
3
. Note, however, that your protocol is greatly simplified

compared to the actual OSPF spec. As described in the references, OSPF works by having each router

maintain an identical database describing the network’s topology. From this database, a routing table is

calculated by constructing a shortest-path tree. Each routing update contains the node’s list of neighbors,

users, and channel. Upon receiving a routing update, a node updates its routing table with the “best”

routes to each destination. In addition, each routing daemon must remove entries from its routing table

when they have not been updated for a long time. The routing daemon will have a loop that looks similar

the following:

while (1)

{

 /* each iteration of this loop is "cycle" */

 wait_for_event(event);

 if (event == INCOMING_ADVERTISEMENT)

 {

 process_incoming_advertisements_from_neighbor();

 }

 else if (event == IT_IS_TIME_TO_ADVERTISE_ROUTES)

 {

 advertise_all_routes_to_all_neighbors();

 check_for_down_neighbors();

 expire_old_routes();

 delete_very_old_routes();

 }

}

Let’s walk through each step. First, our routing daemon A waits for an event. If the event is an

incoming link-state advertisement (LSA), it receives the advertisement and updates its routing table if the

3
 http://www.rfc-editor.org/rfc/rfc2328.txt

4

LSA is new or has a higher sequence number than the previous entries. If the routing advertisement is

from a new router B or has a higher sequence number than the previously observed advertisement from

router B, our router A will flood the new announcement to all of its neighbors except the one from which

the announcement was received, and will then update its own routing tables.

If the event indicates a predefined period of time has elapsed and it is time to advertise the routes,

then the router advertises all of its users, channels, and links to its direct neighbors. If the routing daemon

has not received any such advertisements from a particular neighbor for a number of advertisements, the

routing daemon should consider that neighbor down. The daemon should mark the neighbor down and re-

flood LSA announcements from that neighbor with a TTL of zero When your router receives an

announcement with a TTL of zero, it should delete the corresponding LSAs from its table.

If the event indicates that a user has joined or left a channel or the server, the router should send a

triggered update to its neighbors. This is simply a new link state advertisement with a higher sequence

number that announces the router’s new state. If a node has not sent any announcements for a very long

time, we expire it by removing it from our table.

If B receives an LSA announcement from A with a lower sequence number than it has previously

seen (which can happen, for example, if A reboots), B should echo the prior LSA back to A. When A

receives its own announcement back with a higher sequence number, it will increment its transmitted

serial number to exceed that of the older LSAs.

Each routing announcement should contain a full state announcement from the router – all of its

neighbors, all of its users, and all of its channels. This is an inefficient way to manage the announcements,

but it greatly simplifies the design and implementation of the routing protocol to make it more tractable

for a 5 week assignment. Each time your router originates a new LSA, it should increment the serial

number it uses. When a router receives an updated LSA, it recomputes its local routing table. The

LSAs received from each of the peer nodes tell the router a link in the complete router graph. When a

router has received all of the LSAs for the network, it knows the complete graph. Generating the user

routing table is simply a matter of running a shortest-paths algorithm over this graph.

5.2 Reliable Flooding

OSPF is based upon reliable flooding of link-state advertisements to ensure that every node has an

identical copy of the routing state database. After the flooding process, every node should know the

exact network topology. When a new LSA arrives at a router, it checks to see if the sequence number on

the LSA is higher than it has seen before. If so, the router reliably transmits the message to each of its

peers except the one from which the message arrived. The flooding is made reliable by the use of

acknowledgement packets from the neighbors. When router A floods an LSA to router B, router B

responds with an “LSA Ack.” If router A does not receive such an ack from its neighbor within a certain

amount of time, router A will retransmit the LSA to B.

With the information contained in the LSAs, each server should be able to deliver messages from

one user to another without much trouble. To send messages to a channel, however, requires a little more

work; this is multicast routing instead of unicast routing. A channel can exist on multiple servers, so

the distribution can take multiple branches at a time. How does the local node know which neighbors to

forward the message to in this case?

5

Figure 2 – Sample Network

Since a channel can exist on multiple servers and the server knows the network topology, each server

is able to construct a source rooted shortest paths tree for that message, which tells the server what

outgoing links it should use. Note that this tree is rooted at the message source, not the router making the

computation. The algorithm for computing the shortest paths tree for the multicast case is the same as

for the unicast to a user case, except that the source might not be the local node. With these trees, a server

will know which servers it should propagate a channel message to, depending upon which server sent the

message. Note that there is a different shortest paths tree for every channel/source pair.

Why does it need to know the source? Consider the network pictured in Figure 2. Now, suppose

nodes 1, 2, 5 and 6 have users subscribed to channel #perl, and nodes 1, 3, 4, and 6 have users

subscribed to channel #c. If a user on node 1 wants to send a message to #perl then it should propagate

the message to node 2. Node 2 knows nodes 1 and 5 also have users in #perl, but since the message

came from node 1, it should not propagate the message back to node 1. So, it only propagates the message

to node 5. Examples are given below to help you understand the protocol. Make sure you can understand

the examples.

The channel routing table for node 1 would look like:

Channel name Source Node Next-Hops
#perl 1 2

#perl 2 None
#perl 5 None

#perl 6 None

#c 1 2,3
#c 3 None

#c 4 None
#c 6 None

6

The channel routing table for node 2 would look like:

Channel name Source Node Next-Hops
#perl 1 4,5

#perl 2 1,4,5

#perl 5 1
#perl 6 1

#c 1 4
#c 3 4

#c 4 1,3
#c 6 1

The channel routing table for node 5 would look like:

Channel name Source Node Next-Hops
#perl 1 None

#perl 2 None

#perl 5 2,6
#perl 6 None

#c 1 None
#c 3 6

#c 4 None
#c 6 3

The channel routing table for node 6 would look like:

Channel name Source Node Next-Hops
#perl 1 None

#perl 2 None

#perl 5 None
#perl 6 4,5

#c 1 None
#c 3 None

#c 4 None
#c 6 4,5

Now consider a case where a client on node 2 has not subscribed to the channel #c and sends a

PRIVMSG to the channel. (Note that such a client can only send messages but cannot receive messages

being sent by other users on the channel). In this case, the node will compute the shortest path tree. The

message will be forwarded to nodes 1,3 and 4. Node 4 will then forward the message to node 6. This

should clear the fact that being a source node and being a subscriber are independent.

There are two ways that a router could potentially compute these routes. It could compute all

possible (source, channel) trees in advance, and populate its routing table with the results. Or, the router

could compute the routes dynamically on demand when a message arrives for a particular channel from a

particular source, and cache the results. In this assignment, we will implement the dynamic

7

computation and caching version. The router’s multicast routing table (channel routing table) should act

as a cache, and the router should compute the trees dynamically if it has no entry. Remember to have a

way to indicate “route calculated, but there were no neighbors to which I need to send” in your routing

table so that you don’t eternally recompute local channels. Also, these cached trees must however be

discarded when there is a change in the topology or subscription to channels as notified by triggered

updates or normal advertisements.

Your router should be robust to misbehaving neighbors. If the router receives a channel message

forwarded to it by a peer who should not have forwarded the message (remember, the router can check

this, since it knows the shortest paths tree), it should silently drop the message. Such an event could

occur during a route change when the routing table became temporarily inconsistent, and it can lead to

routing loops. Because multicast can generate a large number of packets, and the IRC network is a less

trusted environment than an ISP’s own routers, dropping the message is safer (for the project), but might

cause packet delivery to be somewhat less reliable. The congestion caused by routing loops is also

typically addressed through a TTL in the packets being forwarded.

5.3 Protocol Specifications

Figure 3 shows the routing update message format, with the size of each field in bytes in parenthesis.

Figure 3 – OSPF Packet Format

 Version – the protocol version, always set to 1

 TTL – the time to live of the LSA. It is decremented each hop during flooding, and is initially

set to 32.

 Type – Advertisement packets should be type 0 and Acknowledgement packets should be type 1.

 Sender nodeID – The nodeID of the sender of the message, not the immediate sender.

 Sequence number – The sequence number given to each message

 Num link entries – The number of link table entries in the message.

 Num user entries – The numbers of users announced in the message

 Num channel entries – The number of channels announced in the message

8

 Link entries – Each link entry contains the nodeID of a node that is directly connected to the

sender. This field is 4 bytes.

 User entries – Each user entry contains the name of the destination user as a null terminated

string. Since the IRC RFC indicates that nicknames should be at most 9 characters and we have

added the constraint that channels can be at most 9 characters (including & or #), it should

definitely fit within 16 (the unused bytes will be ignored).

 Channel entries – Same as a user entry, above.

All multi-byte integer fields (nodeIDs, TTLs, link entries, etc) should be in network byte order.

An acknowledgement packet looks very similar to an announcement packet, but it does not contain any

entries. It contains the sender nodeID and sequence number of the original announcement, so that the

peer knows that the LSA has been reliably received.

5.4 Requirements

Your implementation of OSPF should have the following features:

 Given a particular network configuration, the routing tables at all nodes should converge so that

forwarding will take place on the paths with shortest length.

 In the event of a tie for shortest path, the next hop in the routing table should always point to the

nodeID with the lowest numerical value. Note that this implies there should be a unique solution

to the routing tables in any given network.

 Remove the LSAs for a neighbor if it hasn’t given any updates for some period of time.

 You should implement Triggered Updates (when a link goes down or when users join or leave a

server or channel).

 If a node or link goes down (e.g., routing daemon crashes, or link between them no longer works

and drops all messages), your routing tables in the network should re-converge to reflect the new

network graph. You shouldn’t have to do anything more to make sure this happens, as the above

protocol already ensures it.

You do not have to implement the following:

 You do not have to provide authentication or security for your routing protocol messages.

 You only need to store the single best route to a given user.

 You do not have to “jitter” your timer with randomized times.

6 Local Server–Daemon Protocol

This section describes the mini-protocol that an IRC Server uses to talk to the local routing daemon

on the same node. It is important that you follow these specifications carefully because we will test your

routing daemon independently of your IRC server!

The routing daemon listens on the local port when it starts up to service route lookup requests. When

the IRC server on the same node starts up, it connects to the local port of the routing daemon. Since the

local port is only supposed to service local client programs (like the IRC server) on the same machine that

it trusts, you can assume that we won’t do anything intentionally malicious to try to break it. However,

you may find it useful to make it robust to invalid input, since you may make typos when testing it.

Specifically, you can assume:

9

 We will only use the protocol as defined below. We will not send invalid requests.

 Only a single IRC server will connect to the routing daemon.

 Your IRC server may block while waiting for a response from the routing daemon. (i.e., you can

treat it as a function call)

This is a line-based protocol like the IRC-protocol itself.

Each request and response pair looks like this:

command arguments . . .

results . . .

Where command is the name of the request, arguments . . . is a space-separated list of arguments to the

command, and results . . . is a space-separated list of results returned. All requests and responses are

terminated with a newline character (\n) and are case sensitive, but some responses have multiple lines.

You must implement the following request/response pairs in your routing daemon:

Request: ADDUSER nick

Response: OK

Description: This request is issued when a new user is registered with the IRC server. The user’s nick is

added to the routing daemon’s list of local users so that other nodes can find the user. This should trigger

an immediate update for that nick.

Examples:

req: ADDUSER bob

resp: OK

req: ADDUSER alice

resp: OK

Request: ADDCHAN channel

Response: OK

Description: This request is issued when a new channel is created in the IRC server. The channel name is

added to the routing daemon’s list of local channels so that other nodes can find the channel. This should

trigger an immediate update for that channel.

Examples:

req: ADDCHAN #perl

resp: OK

req: ADDCHAN #networks

resp: OK

Request: REMOVEUSER nick

Response: OK

Description: This request is issued when a local user leaves the IRC server. The user’s nick is removed

from the routing daemon’s list of local destinations so that other nodes will know that they can no longer

reach the user there. This should trigger an immediate update for that nick.

Examples:

10

req: REMOVEUSER bob

resp: OK

req: REMOVEUSER baduser

resp: OK

Request: REMOVECHAN channel

Response: OK

Description: This request is issued when the last local user leaves a channel. The channel name is

removed from the routing daemon’s list of local channels so that other nodes will know that they should

no longer send channel messages to that server. This should trigger an immediate update for that channel.

Examples:

req: REMOVECHAN bob

resp: OK

req: REMOVECHAN baduser

resp: OK

Request: NEXTHOP nick

Response: OK nodeID distance

Response: NONE

Description: This request is used to find nodeID of the next hop to use if we want to forward a message

to the user nick. It should return OK if the routing table has a valid next hop for the nick along with the

distance to that destination, and NONE otherwise (e.g., if the destination’s distance is not known or user

does not exist).

Examples:

req: NEXTHOP bob

resp: OK 2 5

req: NEXTHOP alice

resp: OK 3 2

req: NEXTHOP baduser

resp: NONE

Request: NEXTHOPS sourceID channel

Response: OK nodeID nodeID nodeID . . .

Response: NONE

Description: This request is used to find which links a server should send messages to if it wants to

forward a message to a channel. It should return OK if the routing table has a valid entry for the channel

from the given source node and then list the nodes to which it should propagate the message. Otherwise, it

should return NONE (e.g., if the channel does not exist). See graph in Link-State section.

Examples:

req: NEXTHOPS 1 #perl

resp: OK 2 5 9

req: NEXTHOPS 5 #perl

11

resp: OK 1

req: NEXTHOPS #badchan

resp: NONE

Request: USERTABLE

Response: OK size

Description: If this request is issued, the routing daemon should respond with OK, the size or number of

entries in the routing table, and a multi-line response with its entire user table in the following format:

nickname next-hop distance

nickname next-hop distance

nickname next-hop distance

...

Where nick is the nickname, next-hop is the nodeID of the next hop, and distance is the current distance

value for that destination. You should not include local nicknames in this list. The order of entries does

not matter. Your IRC Server will probably not need to use this command. We will use this to test your

routing daemon. This would be similar to calling NEXTHOP on every user on the server.

Examples:

req: USERTABLE

resp: OK 3

bob 2 2

alice 3 1

jim 3 2

Request: CHANTABLE

Response: OK size

Description: If this request is issued, the routing daemon should respond with OK, the size or number of

entries in the channel table, and a multi-line response with its entire channel table in the following format:

channel sourceID next-hop next-hop next-hop ...

channel sourceID next-hop next-hop next-hop ...

channel sourceID next-hop next-hop next-hop ...

...

Where channel is the channel name, sourceID is the nodeID on which the message would come, and next-

hop is a list of nodeIDs to which the server should propagate a message for that channel. You should not

include channels that exist only locally in this list. The order of entries does not matter. Your IRC Server

will probably not need to use this command. We will use this to test your routing daemon. This would be

similar to calling NEXTHOPS on every channel on the server.

Examples:

req: CHANTABLE

resp: OK 4

#perl 1 2 5 9

#perl 2 5 9

#perl 5 1 9

12

#perl 9 5 2

7 IRC Server (revisited)

Now that we have covered the IRC server, the routing protocols, and the server-daemon protocol, the

only major issue remaining is how to extend your IRC Server to use the routing daemon so it can send

messages to users on remote IRC Servers.

Remember that the PRIVMSG command has two targets: nicknames and channels. If the target is a

nickname, the IRC server must first determine if there is a local user with that nickname. If not, then it

should try to locate the user on a remote IRC Server (using the routing daemon) and, if found, forward the

message to that IRC Server which will then send it to the target. If the target is not found, then you should

send the user an ERR_NOSUCHNICK error. If the target is a channel, then you must echo that message to

every user on that channel.

7.1 Requirements

Your extensions to the IRC server should have the following features:

 Connect to the routing daemon’s local port when it starts up. You can assume the routing daemon

will be started first.

 When a new user is registered with the IRC server, it should add the user’s nick to the routing

daemon’s list of users using the ADDUSER request.

 When a user leaves the IRC server, it should remove the user’s nick from the routing daemon’s

list of users using the REMOVEUSER request.

 When a channel is created on the IRC server, it should send an ADDCHAN message to the

routing daemon.

 When the last user leaves a channel on the IRC server, it should send a REMOVECHAN message

to the routing daemon.

 If a user changes his or her nick, remove the old nick and add the new one to the routing daemon.

 When a PRIVMSG is sent to a nick that we don’t know locally, the IRC Server should ask the

routing daemon to find it, if possible, and forward the message to that user. The remote IRC

server receiving the message should send it to the target user the same way it would send any

other PRIVMSG to him or her.

 If the target is not found, then you should send the user an ERR_NOSUCHNICK error as defined

in section 4.4.1 of the IRC RFC.

 The PRIVMSG command should support multiple targets; i.e., the PRIVMSG command may

have a comma-separated list of target users or channels that should all be sent the message.

 If the routing daemon dies or you cannot communicate with it, your IRC server may exit.

You do not have to implement the following:

 Forwarding messages to target servers, host masks, or anything mentioned in the IRC RFC that is

not mentioned in this document.

7.2 Message Forwarding

Once the IRC Server has found the next hop or route to a remote nickname, it must forward the message

13

to the remote IRC Server. You are responsible for designing a protocol to be used between your IRC

Servers for forwarding these messages so that they will reach the destination. Here are a couple things to

keep in mind when designing your protocol:

 When using OSPF, you can only obtain the next hop from the routing daemon. Hence, each IRC

server along the path will have to query its routing daemon to figure out where to send the packet

next.

 When using OSPF, while forwarding, a node or virtual link may go down (or the target user may

leave). In this circumstance, you can just drop the message. You do not have to inform the user

that sent the message that it was dropped.

 You may have to send the message to multiple peers when forwarding to a remote channel.

 If the same nick is logged on to more than one IRC Server in the network, OSPF should find the

route to the “closest” one. Your forwarding protocol only needs to forward the message to one of

them.

 IRC Servers and virtual links may go down and come back up. If you detect that your neighbor is

down (i.e., the socket is closed), you should check to see if they have come back up at least once

every 3 seconds. In fact, when the network first starts up, since only one server will come up at a

time, all its neighbors will appear to be down at first.

 You should not have IRC Servers communicate if they are not neighbors.

 Your forwarding protocol should not be “flood every message to every IRC server on the

network.” That is not efficient and doesn’t require the routing layer at all.

 You should not rely on any special extensions to the local port mini-protocol. We may test your

IRC Server on our own routing daemon.

8 Implementation Details & Usage

Your programs must be written in the C programming language. You are not allowed to use any

custom socket classes or libraries, only the standard libsocket, the provided library functions, and the

csapp wrapper library developed for 15-213. You may use the pthread library, but you are responsible

for learning how to use it correctly yourself if you choose to. To use the csapp wrapper library, you must

link with libpthread (-lpthread). If you wish to use other libraries, please contact us.

8.1 Compiling

You responsible for making sure your code compiles and runs correctly on the Andrew x86

machines running Linux (i.e., linux.andrew.cmu.edu). We recommend using gcc to compile your

program and gdb to debug it. You should use the -Wall flag when compiling to generate full warnings

and to help debug. For this project, you will also be responsible for turning in a GNUMake (gmake)

compatible Makefile. See the GNU make manual
4
 for details. When we run gmake we should end up

with the routing daemon which you should call srouted and the simplified IRC Server which is called

sircd.

8.2 Command Line Arguments

4
 http://www.gnu.org/manual/software/make/html_mono/make.html

14

Your routing daemon must take the following command line arguments in any order. We will provide you

some framework code that will read in these arguments.

usage: ./srouted -i nodeID -c config_file [options]

-i integer

NodeID. Sets the nodeID for this process.

-c filename

Config file. Specifies the name of the configuration file that contains the information about the

neighbor nodes. The format of this file is described below.

It should also recognize the following optional switches:

-a seconds

Advertisement cycle time. The length of time between each advertisement cycle. Defaults to 30.

-n seconds

Neighbor timeout. The elapsed time after which we declare a neighbor to be down if we have not

received updates from it. You may assume that this value is a multiple of advertisement cycle time.

Defaults to 120.

-r seconds

Retransmission timeout. The elapsed time after which a peer will attempt to retransmit an LSA to

a neighbor if it has not yet received an acknowledgement for that LSA. This value is an integral number

of seconds. Defaults to 3.

-t seconds

LSA timeout. The elapsed time after which we expire an LSA if we have not received updates for it.

You may assume that this value is a multiple of advertisement cycle time. Defaults to 120.

Your IRC server will always have two arguments:

usage: ./sircd nodeID config_file

nodeID

The nodeID of the node.

config_file

The configuration file name.

8.3 Configuration File Format

This file describes the neighborhood of a node. The neighborhood of a node 1 is composed by node 1

itself and all the nodes n that are directly connected to 1. For example, in Figure 4, the neighborhood of

node 1 is {1, 2, 3}. The format of the configuration file very simple, and we will supply you with code to

parse it. The file contains a series of entries, one entry per line. Each line has the following format:

nodeID hostname routing-port local-port IRC-port

15

nodeID

Assigns an identifier to each node.

hostname

The name or IP address of the machine where the neighbor node is running.

local-port

The TCP port on which the routing daemon should listen for the local IRC server.

routing-port

The port where the neighbor node listens for routing messages.

IRC-port

The TCP port on which the IRC server listens for clients and other IRC servers.

Figure 4 – Sample Node Network

Node 2 Node 5

2 localhost 20203 20204 20205

1 unix1.andrew.cmu.edu 20200 20201 20202

3 unix3.andrew.cmu.edu 20206 20207 20208

3 unix3.andrew.cmu.edu 20206 20207 20208

5 localhost 20209 20210 20211

Figure 5 – Sample Configuration file for nodes 2 and 5

How does a node find out which ports it should use as routing, IRC, and local ports? When reading the

configuration file if an entry’s nodeID matches the node’s nodeID of the node (passed in on the

command line), then the node uses the specified port numbers to route and forward packets. Figure 5

contains a sample configuration files corresponding to node 2 and node 5 for the network in Figure 4.

Notice that the file for node 2 contains information about node 2 itself. Node 2 uses this information to

configure itself.

We have provided you with a simple script called genconfig.pl that will auto-generate all the

configuration files for a specified network graph, which you can find in the ./util subdirectory of the

handout. Read the text at the top of the script for documentation.

16

8.4 Running

This is how we will start your IRC network.

First, we start each routing daemon with the commands:
./srouted -i 0 -c node0.conf ... &

./srouted -i 1 -c node1.conf ... &

./srouted -i 2 -c node2.conf ... &

. . .

Each routing daemon will be started with its own configuration file to find out about its neighbors

(described above) and its nodeID. In addition, we will pass it certain arguments to set the timer values.

Next, we will start each IRC server at each node:
./sircd 0 node0.conf &

./sircd 1 node1.conf &

./sircd 2 node2.conf &

. . .

Each IRC Server will be passed its nodeID and the configuration file to find out about its neighbors and

what ports it should use/talk to. Now we will wait enough time such that the routing state should have

converged and test your system. (We may also bring down nodes and restart them to test how resilient

your system is to faults)

8.5 Framework Code

We have provided you with some framework code to simplify some tasks for you, like reading in the

command line arguments and parsing the configuration file. You do not have to use any of this code if

you do not want to. This code is documented in rtlib.h and implemented in rtlib.c. Feel free to

modify this code also. However, you must use the following three routines, which are declared in

rtgrading.h and implemented in rtgrading.c, and must not modify them:

 rt_init(...): You must call this function when your routing daemon starts with the argc

and argv passed to your program.

 rt_sendto(...): Wrapper function for the sendto() system call. The parameters and

semantics are the same as in the system call. You should use this function to send UDP packets in

your routing daemon.

 rt_recvfrom(...): Wrapper function for the recvfrom() system call. The parameters

and semantics are the same as in the system call. You should use this function to receive UDP

packets in your routing daemon.

We will replace rtgrading.c with implementations that we will use for grading so you should not

modify it.

DISCLAIMER: We reserve the right to change the support code as the project progresses to fix bugs and

to introduce new features that will help you debug your code. You are responsible for reading the b-

17

boards to stay up-to-date on these changes. We will assume that all students in the class will read and be

aware of any information posted to b-boards.

9 Testing

Code quality is of particular importance to server robustness in the presence of client errors

and malicious attacks. Thus, a large part of this assignment (and programming in general) is

knowing how to test and debug your work. There are many ways to do this; be creative. We

would like to know how you tested your server and how you convinced yourself it actually

works. To this end, you should submit your test code along with brief documentation describing

what you did to test that your server works. The test cases should include both generic ones that

check the server functionality and those that test particular corner cases. If your server fails on

some tests and you do not have time to fix it, this should also be documented (we would rather

appreciate that you know and acknowledge the pitfalls of your server, than miss them). Several

paragraphs (or even a bulleted list of things done and why) should suffice for the test case

documentation.

Daemon Debugging:

The daemon will have no user interface, but you can still telnet to the local port on your routing

daemons to inject destinations, remove destinations, check routing tables, etc.

To test if your system can handle node faults, kill some of your routing daemons and IRC servers. To

test if your system can handle link faults, try blocking off a pair of UDP ports between two routing

daemons (You can do this artificially in your code by dropping packets that go between them).

10 Handin

Handing in code for checkpoints and the final submission deadline will be done through your

subversion repositories. You can check out your subversion repository with the following

command, where you must change Project2Team# to correct numbers such as “Project2Team2”:

svn co https://moo.cmcl.cs.cmu.edu/441-f10/svn/Project2Team# - username andrewid

The grader will check directories in your repository for grading, which can be created

with an “svn copy”:

• Checkpoint1 – YOUR REPOSITORY/tags/checkpoint1

• Checkpoint2 – YOUR REPOSITORY/tags/checkpoint2

• Final Handin – YOUR REPOSITORY/tags/final

You should submit the following files:

18

 Makefile – Make sure all the variables and paths are set correctly such that your program

compiles in the handin directory. The Makefile should build two executable named srouted

and sircd.

 All of your source code (files ending with .c, .h, etc. only, no .o files and no executables)

 readme.txt: File containing a brief description of your design of your routing daemon and a

complete description of the protocols you used for forwarding IRC messages.

 tests.txt: File containing documentation of your test cases and any known issues you have.

Late submissions will be handled according to the policy given in the course syllabus

11 Grading

 OSPF User routing: 15 points

The OSPF routing protocol should find a route if it exists. If there is more than one, it should only

accept one and ignore the others. If there is no route, it should timeout after a specified time and

ignore any path it might receive after timeout. If there are two users, you should use only one path

and ignore the others.

 OSPF Channel routing: 10 points

The OSPF routing protocol should provide a list of nodes to which a channel message should be

propagated. It must use shortest path finding and build the minimum spanning tree for each source

node.

 User Forwarding: 15 points

Using the PRIVMSG command with a nickname target, the server should communicate with the

daemon to get a next-hop from the local server to the server where the destination resides. Then, you

must send a packet using a protocol of your devising. When an IRC server gets a forwarding packet,

it should deliver the message locally or query the local daemon for the next hop and propagate the

message. The message should travel along the path returned by the daemons and should ultimately be

received. If path fails, you can drop the message and do not have to return an error.

 Channel forwarding: 10 points

Similarly, using the PRIVMSG command with a channel target, the server should communicate with

the daemon to get a list of next-hops from the local server to the servers using that channel. Then, you

must send a packet using a protocol of your devising. When an IRC server gets a forwarding packet,

it should deliver the message locally and/or query the local daemon for the next list of hops given the

source ID of the node from which it received the packet. If the path fails, you can drop the message

and do not have to return an error.

 Robustness: 15 points

o Server robustness: 8 points

o Test cases: 7 points

19

Since code quality is of a high priority in server programming, we will test your program in a variety

of ways using a series of test cases. For example, we will send your server a message longer than 512

bytes to test if there is a buffer overflow. We will make sure that your server does something

reasonable when given an unknown command, or a command with invalid arguments. We will verify

that your server correctly handles clients that leave abruptly (without sending a QUIT message). We

will test that your server correctly handles concurrent requests from multiple clients, without

blocking inappropriately.
5

However, there are many corner cases that the RFC does not specify. You will find that this is very

common in “real world” programming since it is difficult to foresee all the problems that might arise.

Therefore, we will not require your server pass all of the test cases in order to get a full 15 points.

We will also look at your own documented test cases to evaluate how you tested your work.

 Style: 15 points

Poor design, documentation, or code structure will probably reduce your grade by making it hard for

you to produce a working program and hard for the grader to understand it; egregious failures in these

areas will cause your grade to be lowered even if your implementation performs adequately.

To help your development and testing, we suggest your server optionally take a verbosity level switch

(-v level) as the command line argument to control how much information it will print. For example, -

v 0 means nothing printed, -v 0 means basic logging of users signing on and off, -v 2 means logging

every message event.

 Checkpoint: 15 points

Tests and extra credit sections need not be submitted. Just complete the scripts and mail the hash

back. Late policy does not apply to the checkpoint. You may either submit on time or else you may

not get the points applicable to the checkpoint. Core networking and IRC protocol on a standalone

server will be tested for this checkpoint.

12 Getting Started

Depending on your previous experience, this project may be substantially larger than your previous

programming projects. Expect the server implementation to require more than 1000 lines of code. With

that in mind, this section gives suggestions for how to approach the project. Naturally, other approaches

are possible, and you are free to use them.

 First, take a deep breath and do not panic.

 Start early (again)! The hardest part of getting started tends to be getting started. Remember the

90-90 rule: the first 90% of the job takes 90% of the time; the remaining 10% takes the other 90%

of the time. Starting early gives your time to ask questions. For clarifications on this assignment,

post to the class discussion bulletin board and read project updates on the course web page. Talk

to your classmates. While you need to write your own original program, we expect conversation

with other people facing the same challenges to be very useful. Come to office hours. The course

staff is here to help you.

 Decide how you will split up the work between you and your partner. You can start with either

5
 As an exception to this rule, your server may block while doing DNS lookups.

20

partner’s IRC server as the starting point, whichever one works best. Some parts of this

project can be done in parallel, but you should coordinate since they both have to work with the

same program. Both of you should understand everything implemented for this project.

 Once the simple IRC server is complete (it should be by now!), you can begin extending it with

interfaces between the IRC server and your routing daemon. Since the routing daemon and IRC

server are two programs, it is probably best to have the two thoroughly tested independently to

trap errors more efficiently. For this purpose, we will release a routing daemon binary whereby

you can first only implement the IRC server interfaces to the routing daemon, and test the

interfaces between a standalone pair of IRC server and the given routing daemon binary.

 Once the IRC server extensions are done, you should start worrying about the routing daemon.

First, get familiar with UDP socket programming, which is almost identical to TCP socket. Next,

write up a design of each part of the routing daemon and decide what data structures you will

need. First tackle general flooding and table construction. Work on getting the link entry and user

entry tables functional. Once the protocol works for messages between users, then start working

on multicasting, minimum spanning trees, shortest path finding, and multicasting.

 Again, thoroughly test the routing daemon. Telnet is a very useful tool for this. Make you’re your

daemon can add paths, remove paths, find paths, withstand failures, and does not segfault.

 Before you start implementing message forwarding in your IRC Server, carefully design a

protocol. You might need to differentiate between users and channels since channels need to be

multicasted. Outline what parts of the original IRC server need to be modified in order to connect

and talk to the routing daemon.

 Almost there! Hopefully, after implementing the message forwarding protocol and server

extensions everything will work perfectly. More likely, though, something will break. Things that

work perfectly separately do not always work perfectly together. This is a big software

engineering problem. So, yet again, thoroughly test the final product. Run the same tests you used

on the individual pieces to make sure nothing broke in the merge.

 You may use some of the system call wrappers provided by CS 15-213 csapp library (included

with the simple IRC client package). However, for server robustness, you should not use certain

wrappers such as Select since temporary system call failures (e.g., EINTR) would cause the

server to abort. Instead, you server should handle such errors gracefully. For the same reason, you

should NOT use the RIO read/write functions provided by the csapp library as they may cause

your server to block while reading/writing, or give inappropriate return codes.

 “Be liberal in what you accept, and conservative in what you send.”
6
 Following this guiding

principle of Internet design will help ensure your server works with many different and

unexpected client behaviors.

 Code quality is important. Make your code modular and extensible where possible. You should

probably invest an equal amount of time in testing and debugging as you do writing. Also, debug

incrementally. Write in small pieces and make sure they work before going on to the next piece.

Your code should be readable and commented. Not only should your code be modular,

extensible, readable, etc, most importantly, it should be your own!

13 Resources

6
 http://www.ietf.org/rfc/rfc1122.txt, page 11

21

For information on network programming, the following may be helpful:

 Class Textbook – Sockets, OSPF, etc

 Class B-board – Announcements, clarifications, etc

 Class Website – Announcements, errata, etc

 Computer Systems: A Programmer’s Perspective (CS 15-213 text book)
7

 BSD Sockets: A Quick And Dirty Primer
8

 An Introductory 4.4 BSD Interprocess Communication Tutorial
9

 Unix Socket FAQ
10

 Sockets section of the GNU C Library manual

o Installed locally: info libc

o Available online: GNU C Library manual
11

 man pages

o Installed locally (e.g. man socket)

o Available online: the Single Unix Specification
12

 Google groups
13

 - Answers to almost anything

7
 http://csapp.cs.cmu.edu

8
 http://www.frostbytes.com/˜jimf/papers/sockets/sockets.html

9
 http://docs.freebsd.org/44doc/psd/20.ipctut/paper.pdf

10
 http://www.developerweb.net/forum/forumdisplay.php?s=f47b63594e6b831233c4b8ebaf10a614&f=70

11
 http://www.gnu.org/software/libc/manual/

12
 http://www.opengroup.org/onlinepubs/007908799/

13
 http://groups.google.com

