
15-441: Recitation 6

Project 2: IRC Routing Daemon

 Focus: not really IRC anymore

 All about routing: link-state

 You NEED a project parnter

 You may NOT work alone

Finding a Project Partner

 This is very important, you will spend

hours and hours with this person

 Start looking soon, inquire:

 Class schedules

 Additional constraints: research/work/life

 Hopes & desires: striving for 100%? 80%?

 Skills: someone good at routing logic and

someone good at coding?

Post a Personal!

 Talk to students

 After class and in recitation

 Additionally, mail the bboard:

Hi, my name is George. My class schedule is

XXXXX. I have a job and I work from X-Y on days

A and B….

IRC Servers and Routing

New Definitions

 Node – IRC server + Routing Daemon

 nodeID – unique node identifier

 Neighbor – node’s A and B are neighbors if there

is a virtual link between them

 Forwarding port – same as IRC port

 Local port – TCP port for serverdaemon

 Routing port – UDP port on daemon

 OSPF – link-state protocol similar to the one you’ll

be implementing

 Routing table – used to store paths

Inter-Daemon Communcation

Link-state Routing Protocols

 Protocols with a global view of the network

 Every daemon knows about every daemon

 Every daemon knows connectivity graph

 Routing table constructed using shortest

path tree

 Flooding is used to propagate routing

information

LSA: Link State Announcement

Version: always 1

TTL: initial(32) value--; every hop

Type: advertisement(0), ACK(1)

sender nodeID: original sender

sequence number: ++ per LSA

num ______: # of entries

Link entries: nodeID of neighbors

User entries: NICKs on server

Channel entries: channels on server

LSAs: When to Generate

 Generate LSAs periodically

 Specified interval

 Generate LSAs on-demand:

 User joins or quits

 First user on server to join a channel

 Neighbor is detected as down (timeout)

LSA Propagation from nodeID 1

#perl

#C

#perl

#perl

#perl

#C

#C

#C

V(1), TTL(32), T(0)

SEQ(50)

snodeID(1)

L(2), U(0), C(1)

2

3

#linux

LSA
LSA

#perl

#C

#perl

#perl

#perl

#C

#C

#C

V(1), TTL(32), T(0)

SEQ(50)

snodeID(1)

L(2), U(0), C(1)

2

3

#linux

LSA

LSA
LSA

LSA
LSA

LSA Propagation from nodeID 1

#perl

#C

#perl

#perl

#perl

#C

#C

#C

V(1), TTL(32), T(0)

SEQ(50)

snodeID(1)

L(2), U(0), C(1)

2

3

#linux

LSA

LSA

LSA Propagation from nodeID 1

Assume LSA from 2 got to node 5 before the LSA from 3

LSA

LSA

LSA

#perl

#C

#perl

#perl

#perl

#C

#C

#C

V(1), TTL(32), T(0)

SEQ(50)

snodeID(1)

L(2), U(0), C(1)

2

3

#linux

LSA

LSA Propagation from nodeID 1

Assume LSA from 4 got to node 6 before the LSA from 5

Details

 Daemon  Daemon: UDP

 Use acks to make reliable

 Don’t panic, sample UDP code going to be

released

Computing Routing Tables

 At every node:

 Compute shortest past from every node to

every node

 Create next hops table

 We will see in the following slides…

Inter-Server Communcation

Routing: Posting to #perl

#perl

#C

#perl

#perl

#perl

#C

#C

#C

PRIVMSG

PRIVMSG

PRIVMSG

PRIVMSG

PRIVMSGPRIVMSG

Understanding the Routing

#perl

#C

#perl

#perl

#perl

#C

#C

#C

PRIVMSG
PRIVMSG

PRIVMSG

#perl

#C

#perl

#perl

#perl

#C

#C

#C

Node 1

Server/Daemon

Communication

Server  Daemon Comm.

 Server and Daemon need to communicate

 Server notifies daemon of updates

 Networking details:

 Server  Daemon: TCP

Server and Daemon Cmds

 Commands from server to daemon:

 ADDUSER: adds a user

 ADDCHAN: adds a channel

 REMOVEUSER: deletes a user

 REMOVECHAN: deletes a channel

 NEXTHOP: nodeID of next hop for target

 NEXTHOPS: next hop, given a target

 USERTABLE: user routing table

 CHANTABLE: channel routing table

Announcements

 The rest of the details are going to be in

the handout

Questions?

