
DEBUGGING IN THE

REAL WORLD

15-441: Recitation 4

Outline

 What can go wrong?

 How can we avoid errors?

 What tools are available to debug errors?

 Valgrind

GDB

What can go wrong?

 Project 1: IRC server, what are our components?

 managing connections (e.g., sockets)

 handling clients (e.g., client pool)

 handling data (e.g., buffers and strings manipulation)

 IRC protocol (e.g., RFC … JOIN, PART, MSG)

 What kind of errors can we have? (2 major types)

 Logical error vs. fault (crashing)

Error Types and Project 1

 What logic errors do you need to be careful of?

 IRC protocol following the RFC

 Handling socket information properly

 What faults do you need to be careful of?

Memory copying (e.g., buffer to buffer)

 String manipulation (e.g., handling client messages)

 Array accesses (e.g., your client pool)

 Socket descriptors

Save yourself a headache!

 First and foremost: practice smart programming to

avoid faults.

 CHECK RETURN CODES!

 Bad: read(fd, &buffer, nbtr);

Good: if((nbytes=read(fd, &buffer, nbtr))==-1)

 Use safe functions: snprintf(good) vs. sprintf(bad)

 Check pointers before use: if(clientfd!=NULL) { … }

Outline

 What can go wrong?

 How can we avoid errors?

 What tools are available to debug errors?

 valgrind

 strace

GDB

Reality: errors will happen

 We are all human (I think!), bugs will occur

Goal: find and terminate them as fast as possible

 Don’t: toss printf()’s everywhere and hope for the

best, this takes a long time

 Do: use a great set of tools for debugging

 Saves time  saves points!

 Saves headache  saves sanity!

Outline

 What can go wrong?

 How can we avoid errors?

 What tools are available to debug errors?

 Valgrind

GDB

Valgrind debugging tool

 Goal: detect memory errors

 Accesses outside of memory bounds

Memory leaks

 Great for finding errors that would only show

during harsh test cases

 Yes, we will use harsher test cases than checkpoint 1

and checkpoint 2 for final grading!

Valgrind: Example Errors

 Can you find two errors in this program?

#include <stdlib.h>

void f(void) {

int* x = malloc(10 * sizeof(int));

x[10] = 0;

}

int main(void) {

f();

return 0;

}

1. Invalid memory access

2. Memory never free()’d

Running Example in Valgrind

 Running valgrind with the program:

 valgrind --leak-check=yes myprog arg1 arg2

 Invalid access output (error 1):

 Memory leak output (error 2):
==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)

==19182== by 0x8048385: f (a.c:5)

==19182== by 0x80483AB: main (a.c:11)

==19182== Invalid write of size 4

==19182== at 0x804838F: f (example.c:6)

==19182== by 0x80483AB: main (example.c:11) Process ID

Where the

error occurs

Size of the leak

Outline

 What can go wrong?

 How can we avoid errors?

 What tools are available to debug errors?

 Valgrind

GDB

GDB: GNU Project Debugger

 The best debugging tool for your projects!

 Segfaulting? No problem.

 You can step through your program, line by line and

monitor any memory!

 Seriously, it doesn’t get any better than this

How to use GDB

 Two major ways:

 Read a core dump

 step through a program

 Getting a segfault and just want to determine
where it happened?

Get a core file, run: ulimit –c unlimited

 Cause the program to segfault

 MUST MUST MUST: enable –g flag when compiling

GDB: reading a core file

 Enable core dumping and run:

 Open the core in GDB:

$ ulimit -c unlimited

$./cache_sim config.example0 < trace.example0

….

Segmentation fault (core dumped)

$ gdb cache_sim core

…

#0 0x08049bae in memory::load (…, …) at cache_sim.cc:252

252 if(!d_tag_store[i][index].valid) {

(gdb) backtrace

#0 0x08049bae in memory::load (…, …) at cache_sim.cc:252

#1 0x0804a3e2 in handle_load_reference (…) at cache_sim.cc:366

#2 0x0804b63e in main (…, …) at cache_sim.cc:562

Function where the

segfault occurs (load)

Line where the segfault

occurs

How we got there

GDB: Being interactive w/ EMACS

 You can step through your code with EMACS

 You use VIM? No problem, just use emacs to debug!

 How to run in EMACS:

 emacs <source_file.c>

 ctrl+x+3 (splits screen)

 ctrl+x+o (moves cursor to right side of screen)

 esc+x (brings up line at bottom)

 gdb (type in bottom and hit enter)

 hit enter 1 more time! (fix executable file name if needed)

GDB: useful commands

 Useful commands for you to know:

 Start the program: run <arg1> <arg2> …

 Create breakpoint: break <line> OR break <function>

Goto next line: next

 Step into a function: step

 Check a variable value: print <variable name>

 Display a variable value: display <variable name>

Wrapup: Questions anyone?

 Questions on debugging?

 Valgrind, GDB…

 Questions on project 1?

 IRC protocol, sockets, client pool, buffers…

 General course questions?

 Ethernet, wireless, physical layer, application layer…

