“ 15-441 Computer Networking

Lecture 21 — Queue Management and
Quality of Service

Peter Steenkiste

Fall 2010
www.cs.cmu.edu/~prs/15-441-F10

Traffic and Resource Management i‘

» Resources statistically shared
> Demand; (t) > Resource(t)

» Overload causes congestion

//
 packet delayed or dropped ‘/]/O

« application performance
suffer

* Local vs. network wide
» Transient vs. persistent
» Challenge
* high resource utilization
« high application
performance

Resource Management Approaches “

Y Demand,; (t) > Resource(t)

e Increase resources
« install new links, faster routers
 capacity planning, provisioning, traffic engineering
* happen at longer timescale

* Reduce or delay demand

 Reactive approach: encourage everyone to reduce or
delay demand

» Reservation approach: some requests will be rejected
by the network

Congestion Control in Today’s Internet n

« End-system-only solution (TCP)

» dynamically estimates network
state

* packet loss signals congestion

e reduces transmission rate in
presence of congestion

* routers play little role

Feedback Capacity
Control Planning
Control
Time scale

RTT (ms) Months

How to Improve
Traffic Management

«

e Improve TCP
e Stay with end-point only architecture
» Enhance routers to help TCP
¢ Random Early Discard
» Enhance routers to control traffic
 Rate limiting
e Fair Queueing
» Provide QoS by limiting congestion

Router Mechanisms i‘,

» Buffer management: when and which packet to
drop?
e Scheduling: which packet to transmit next?

5 o o
T —

. Buffer

. management
-1

Overview

L\

* Queue management & RED

 Fair-queuing

Why QOS?

Integrated services

Queuing Disciplines n

e Each router must implement some queuing
discipline

¢ Queuing allocates both bandwidth and buffer
space:
» Bandwidth: which packet to serve (transmit) next
 Buffer space: which packet to drop next (when

required)
» Queuing also affects latency

Typical Internet Queuing “,

FIFO + drop-tail

» Simplest choice - used widely in the Internet

FIFO (first-in-first-out)

* Implies single class of traffic

 All packets treated equally

Drop-tail

« Arriving packets get dropped when queue is full
regardless of flow or importance

Important distinction:

¢ FIFO: scheduling discipline

e Drop-tail: drop policy

FIFO + Drop-tail Problems i‘

e Leaves responsibility of congestion control
completely to the edges (e.g., TCP)

» Does not separate between different flows

* No policing: send more packets > get more
service

e Synchronization: multiple end hosts may react to
same events at about the same time
e E.g. due to busts of packet loss

FIFO + Drop-tail Problems “

* Full queues

¢ Routers are forced to have have large queues to
maintain high utilizations

e TCP detects congestion from loss
» Forces network to have long standing queues in steady-state
» May no longer be able to absorb bursts
» Lock-out problem
 Drop-tail routers treat bursty traffic poorly

« Traffic gets synchronized easily - allows a few flows
to monopolize the queue space

Active Queue Management “

» Design active router queue management to aid
congestion control

e Why?

* Router has unified view of queuing behavior

e Routers see actual queue occupancy (distinguish
gueue delay and propagation delay)

* Routers can decide on transient congestion, based
on workload

12

Design Objectives

«

Keep throughput high and delay low

e High power (throughput/delay)
Accommodate bursts

» Queue size should reflect ability to accept
bursts rather than steady-state queuing
Improve TCP performance with minimal
hardware changes

13

Lock-out Problem i‘

» Random drop

¢ Packet arriving when queue is full causes some
random packet to be dropped

e Drop front
¢ On full queue, drop packet at head of queue

e Random drop and drop front solve the lock-out
problem but not the full-queues problem

Full Queues Problem

L\

» Drop packets before queue becomes full

(early drop)

* Intuition: notify senders of incipient
congestion

» Example: early random drop (ERD):

« If glen > drop level, drop new packets with

fixed probability p
« Does not control misbehaving users

15

Random Early Detection (RED) “

Detect incipient congestion
» Assume hosts respond to lost packets

Avoid window synchronization
« Randomly mark packets

» Avoid bias against bursty traffic

16

RED Algorithm “,

» Maintain running average of queue length
* If avg < miny, do nothing

¢ Low queuing, send packets through
* If avg > maxy,, drop packet

 Protection from misbehaving sources

Else drop packet in a manner proportional to
gueue length

 Notify sources of incipient congestion

e Can instead mark the packet if ECN is used (later)

17

RED Operation i‘

Max thresh Min thresh

Average Queue Length

Explicit Congestion Notification (ECN) “

[Floyd and Ramakrishnan 98]

e Traditional mechanism: packet drop as implicit
congestion signal to end systems

e TCP will slow down

e Works well for bulk data transfer

e Does not work well for delay sensitive applications
» audio, WEB, telnet

e Explicit Congestion Notification (ECN)
* borrow ideas from DECBit

 use two bits in IP header
« ECN-Capable Transport (ECT) bit set by sender
« Congestion Experienced (CE) bit set by router

19

P(drop)
1.0 -
maxp
ming, malxm Avg queue length
18
Congestion Control Summary n

» Basis: end system detects congestion and slow down

« slow start/congestion avoidance

» packet drop detected by retransmission timeout RTO as
congestion signal

¢ AIMD: search for right bandwidth, considering fairness
e TCP Improvement:

« fast retransmission/fast recovery
¢ packet drop detected by three duplicate acks
* SACK: better feedback to source
* Router support
» RED: early signaling
» ECN: explicit signaling

20

Overview

«

* Queue management & RED

 Fair-queuing

Why QOS?

Integrated services

21

Problems to achieving fairness

N

* Works only if most sources implement TCP

* most sources are cooperative

¢ most sources implement
homogeneous/compatible control law
» compatible means less aggressive than TCP

» What if sources do not play by the rule?

22

An Example

L\

e 1 UDP (10 Mbps) and 31 TCPs sharing a 10

Mbps line

UDP (#1) - 10 Mbps
TCP (#2)

TCP (#32)
Bottleneck link
(10 Mbps)

UDP (#1)
TCP (#2)

TCP (#32)

23

Throughput of UDP and TCP Flows
With FIFO

"N

Throughput (Mbps)
o
!

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3

Flow Number

1

24

Fairness Goals “,

* Allocate resources fairly

* Isolate ill-behaved users
¢ Router does not send explicit feedback to source
« Still needs e2e congestion control

« Still achieve statistical multiplexing
» One flow can fill entire pipe if no contenders

» Work conserving > scheduler never idles link if it has
a packet

25

What is Fairness? i‘,

e At what granularity?
¢ Flows, connections, domains?
e What if users have different RTTs/links/etc.
» Should it share a link fairly or be TCP fair?
* Maximize fairness index?
» Fairness = (Zx)?/n(2x?) O<fairness<1i
e Basically a tough question to answer!
* Good to separate the design of the mechanisms from
definition of a policy
e User = arbitrary granularity

26

Max-min Fairness “

e Allocate user with “small’ demand what it wants,
evenly divide unused resources to “big” users
* Formally:
» Resources allocated in terms of increasing demand

» No source gets resource share larger than its demand
« Sources with unsatisfied demands get equal share of resource

—

27

Implementing Max-min Fairness n

» Generalized processor sharing
 Fluid fairness
« Bitwise round robin among all queues
* Why not simple round robin?

« Variable packet length > can get more service by
sending bigger packets

¢ Unfair instantaneous service rate
« What if arrive just before/after packet departs?

28

Bit-by-bit RR i‘.

 Single flow: clock ticks when a bit is transmitted.
For packet i:
* P,=length, A = arrival time, S, = begin transmit time, F;
= finish transmit time
¢ Fi=5+P; =max (Fiy, A) + P
» Multiple flows: clock ticks when a bit from all
active flows is transmitted = round number
» Can calculate F; for each packet if number of flows is
know at all times

* Why do we need to know flow count? - need to know A - This
can be complicated

29

Bit-by-bit RR Illustration O\ Y

» Not feasible to
interleave bits on real
networks

¢ FQ simulates bit-by-bit
RR

30

Fair Queuing “

FQ lllustration i‘

» Mapping bit-by-bit schedule onto packet
transmission schedule
» Transmit packet with the lowest F; at any given
time
* How do you compute F;?

B =

31

Variation: Weighted Fair Queuing (WFQ)

32

Bit-by-bit RR Example O\ Y

Flow 1 Flow 2 Output

F=5 Flow 1 Flow 2
(arriving) transmitting

Cannot preempt packet F=1
currently being transmitted
F=2

Output

33

Fair Queuing Tradeoffs i‘,

e Complex computation
¢ Classification into flows may be hard
* Must keep queues sorted by finish times
» dR/dt changes whenever the flow count changes
e Complex state
¢ Must keep queue per flow
» Hard in routers with many flows (e.g., backbone routers)
« Flow aggregation is a possibility (e.g. do fairness per domain)
e FQ can control congestion by monitoring flows
* Non-adaptive flows can still be a problem — why?

34

Example: Throughput of TCP and UDP “

Flows With Fair Queueing Router

0.45

0.4 1
0.35 1

0.3 9

0.25 1
HFQ
0.2 9
0.15 1
0.1
0.05 1
0 L LS

L s T LI s
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Flow Number

Throughput (Mbps)

35

Overview i‘

Queue management & RED

Fair-queuing

Why QOS?

Integrated services

36

Motivation “,

* Internet currently provides one single class of
“best-effort” service
» No assurances about delivery
 All users (packets?) are equal

» Atinternet design most applications are elastic
» Tolerate delays and losses
« Can adapt to congestion

» Today, many “real-time” applications are inelastic

37

Why a New Service Model? i‘,

* What is the basic objective of network design?
e Maximize total bandwidth? Minimize latency?

e Maximize user satisfaction — the total utility given
to users

* What does utility vs. bandwidth look like?

» Shape depends on application
¢ Must be non-decreasing function

38

Utility Curve Shapes “

u Elastic u Hard real-time
BW BW
U Delay- or Rate-adaptive

Stay to the right and you
are fine for all curves

BW

39

Utility curve — Elastic traffic n

u Elastic

Bandwidth

Does equal allocation of
bandwidth maximize total utility?

40

10

Admission Control “,

+ If U(bandwidth) is concave

i R U Elastic
- elastic applications
¢ Incremental utility is decreasing
with increasing bandwidth BW

* Is always advantageous to have
more flows with lower bandwidth
* No need of admission control;

This is why the Internet works!

41

Utility Curves — Inelastic traffic i‘

U Delay-adaptive U Hard real-time

BW BW

Does equal allocation of
bandwidth maximize total utility?

42

Inelastic Applications “

» Continuous media applications
e Lower and upper limit on acceptable performance.
* BW below which video and audio are not intelligible
Internet telephones, teleconferencing with high delay
(200 - 300ms) impair human interaction
* Sometimes called “tolerant real-time” since they can
adapt to the performance of the network

* Hard real-time applications
» Require hard limits on performance
» E.g. control applications

43

Admission Control n

* If Uis convex - inelastic
applications]
* U(number of flows) is no longer
monotonically increasing
» Need admission control to maximize
total utility
e Admission control - deciding
when adding more people would
reduce overall utility
 Basically avoids overload

Delay-adaptive

BW

44

11

Overview “,

* Queue management & RED

 Fair-queuing

Why QOS?

Integrated services

45

Components of Integrated Services i‘,

1. Type of commitment
What does the network promise?
2. Packet scheduling
How does the network meet promises?
3. Service interface
How does the application describe what it wants?
4. Establishing the guarantee
How is the promise communicated to/from the network
How is admission of new applications controlled?

46

Type of Commitments “

» Guaranteed service
» For hard real-time applications

» Fixed guarantee, network meets commitment if clients send at
agreed-upon rate

e Predicted service
» For delay-adaptive applications
e Two components
« If conditions do not change, commit to current service

« If conditions change, take steps to deliver consistent performance (help
apps minimize playback delay)
« Implicit assumption — network does not change much over time

» Datagram/best effort service

47

Scheduling for Guaranteed Traffic i‘

* Use token bucket filter to characterize traffic
» Described by rate r and bucket depth b

» Use Weighted Fair-Queueing at the routers

» Parekh’s bound for worst case queuing delay = b/r

48

12

Token Bucket Filter “.

Tokens enter bucket
atrater

Bucket depth b:
capacity of bucket

Operation:

-, « If bucket fills, tokens are discarded

¢ Sending a packet of size P uses P
tokens

 If bucket has P tokens, packet sent
at max rate, else must wait for
tokens to accumulate

49

Token Bucket Operation i‘,

Tokens Tokens Tokens

ﬂl

Overflow

Fager] [Packet | O

Enough tokens > Not enough tokens
packet goes through, - wait for tokens to
tokens removed accumulate

50

Token Bucket Characteristics “

On the long run, rate is limited to r
On the short run, a burst of size b can be sent

» Amount of traffic entering at interval T is
bounded by:
o Traffic=b +r*T

* Information useful to admission algorithm

51

Token Bucket i‘

Parameters

* r—average rate, i.e., rate at which tokens fill the bucket

* b - bucket depth

¢ R —maximum link capacity or peak rate (optional parameter)
A bit is transmitted only when there is an available token

rbps bits
L 'I b*RI(R-T) | — < sloper
b bits
\ slope R
Lt <=R bpS
/ time
regulator

52

13

Traffic Enforcement: Example “,

e =100 Kbps; b =3 Kb; R =500 Kbps
@) (®)

3Kb I | 22Kb‘1 I

Token Bucket Specs - Example i‘,

BW Flow B
2 Flow A: r =1 MBps, B=1 byte
1 Flow A Flow B: r = 1 MBps, B=1MB

1 2 3 Time

54

— B __ 1o
T =0: 1Kb packet arrives T = 2ms : packet transmitted
b = 3Kb — 1Kb + 2ms*100Kbps = 2.2Kb
() (d) (e)
2.4Kb“| | 3Kb | | O.6Kb‘| I
——
oo __ o B
T = 4ms : 3Kb packet arrives T=10ms: T =16ms : packet
transmitted
53
Guarantee Proven by Parekh “
* Given:

* Flow i shaped with token bucket and leaky bucket rate control
(depth b and rate r)
* Network nodes do WFQ
» Cumulative queuing delay D, suffered by flow i has upper
bound
* D; <b/r, (where r may be much larger than average rate)
e Assumes that 2r < link speed at any router
» All sources limiting themselves to r will result in no network
queuing

55

Sharing versus Isolation i‘

» Impact of queueing mechanisms:
« Isolation: Isolates well-behaved from misbehaving sources
 Sharing: Mixing of different sources in a way beneficial to all

FIFO: sharing
« each traffic source impacts other connections directly
 e.g. malicious user can grab extra bandwidth
 the simplest and most common queueing discipline
» averages out the delay across all flows
 Priority queues: one-way sharing
« high-priority traffic sources have impact on lower priority traffic only
 has to be combined with admission control and traffic enforcement
to avoid starvation of low-priority traffic
* WFQ: two-way isolation
¢ provides a guaranteed minimum throughput (and maximum delay)

56

Putting It All Together i‘,

» Assume 3 types of traffic: guaranteed, predictive,
best-effort

e Scheduling: use WFQ in routers
» Each guaranteed flow gets its own queue
 All predicted service flows and best effort

aggregates in single separate queue

* Predictive traffic classes
» Worst case delay for classes separated by order of magnitude

* When high priority needs extra bandwidth — steals it from lower
class

 Best effort traffic acts as lowest priority class

57

Service Interfaces i‘

e Guaranteed Traffic
» Host specifies rate to network
e Why not bucket size b?
« If delay not good, ask for higher rate
* Predicted Traffic
e Specifies (r, b) token bucket parameters
» Specifies delay D and loss rate L
¢ Network assigns priority class

 Policing at edges to drop or tag packets

» Needed to provide isolation — why is this not done for
guaranteed traffic?
* WFQ provides this for guaranteed traffic

58

Lessons “

» TCP can use help from routers
¢ RED - eliminate lock-out and full-queues problems
* FQ - heavy-weight but explicitly fair to all

* QoS
« What type of applications are there? - Elastic,
adaptive real-time , and hard real-time.
¢ Why do we need admission control - to maximize
utility
* How do token buckets + WFQ provide QoS
guarantees?

59

15

