Lecture 20: Security

15-441 – Computer Networking Peter Steenkiste

Fall 2010

www.cs.cmu.edu/~prs/15-441-F10

With slides from: Debabrata Dash, Nick Feamster, Vyas Sekar, and others

Our "Narrow" Focus

- Yes:
 - Creating a "secure channel" for communication (Part I)
 - Protecting network resources and limiting connectivity (Part II)
- No:
 - Preventing software vulnerabilities & malware, or "social engineering".

15-411: security

Flashback .. Internet design goals

- 1. Interconnection
- 2. Failure resilience
- 3. Multiple types of service
- 4. Variety of networks
- 5. Management of resources
- 6. Cost-effective
- 7. Low entry-cost
- 8. Accountability for resources

Where is security?

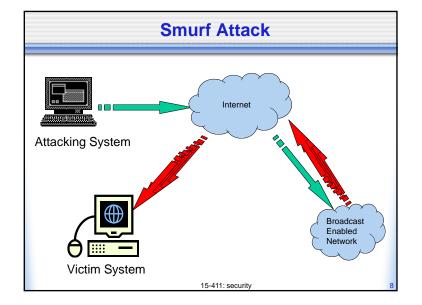
15-411: security

Why did they leave it out?

- Designed for connectivity
- Network designed with implicit trust
 - No "bad" guys
- Can't security be provided at the edge?
 - Encryption, Authentication etc
 - End-to-end arguments in system design

Security Vulnerabilities

- At every layer in the protocol stack!
- Network-layer attacks
 - IP-level vulnerabilities
 - Routing attacks
- Transport-layer attacks
 - TCP vulnerabilities
- Application-layer attacks


15-411: security

IP-level vulnerabilities

- IP addresses are provided by the source
 - Spoofing attacks
- Using IP address for authentication
 - e.g., login with .rhosts
- · Some "features" that have been exploited
 - Fragmentation
 - Broadcast for traffic amplification

15-411: security

The IP addresses are filled in by the originating host Address spoofing Using source address for authentication r-utilities (rlogin, rsh, rhosts etc..) Can A claim it is B to the server S? ARP Spoofing Can C claim it is B to the server S? ARP Spoofing Can C claim it is B to the server S? All 1.1.1.1 Security Source Routing A source Routing

ICMP Attacks

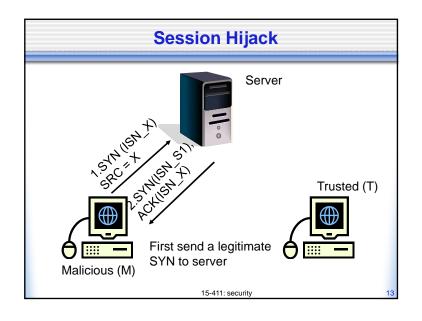
- No authentication
- ICMP redirect message
 - Can cause the host to switch gateways
 - Benefit of doing this?
 - Man in the middle attack, sniffing
- ICMP destination unreachable
 - Can cause the host to drop connection
- ICMP echo request/reply
- Many more...
 - http://www.sans.org/rr/whitepapers/threats/477.php

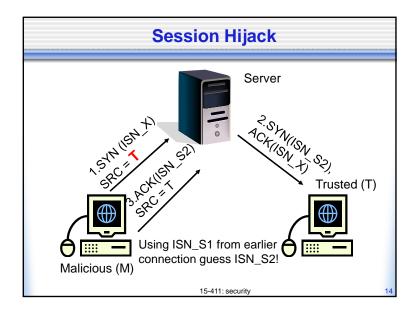
15-411: security

Routing attacks

- Divert traffic to malicious nodes.
 - Black-hole
 - Eavesdropping
- How to implement routing attacks?
 - Distance-Vector:
 - Link-state:
- BGP vulnerabilities

15-411: security

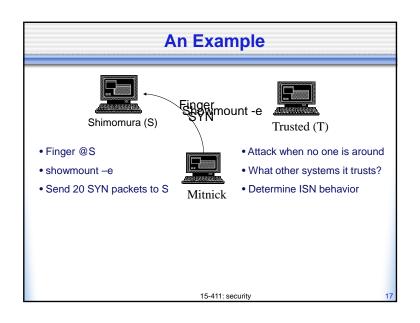

Routing attacks

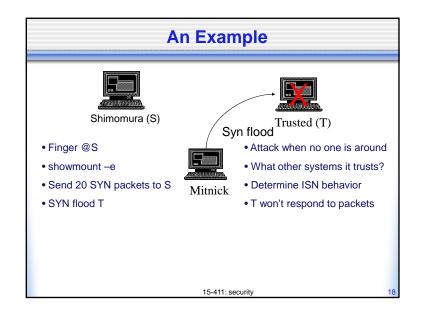

- Divert traffic to malicious nodes
 - Black-hole
 - Eavesdropping
- How to implement routing attacks?
 - Distance-Vector: Announce low-cost routes
 - Link-state: Dropping links from topology
- BGP vulnerabilities
 - Prefix-hijacking
 - Path alteration

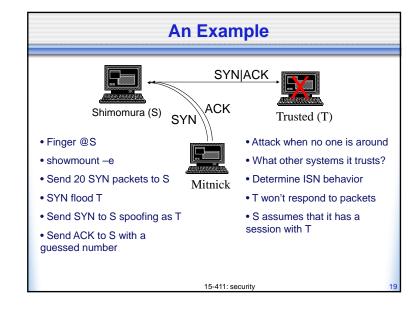
15-411: security

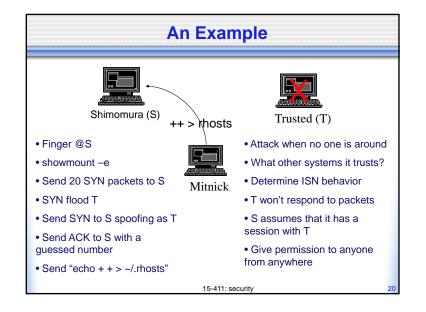
TCP-level attacks

- SYN-Floods
 - Implementations create state at servers before connection is fully established
- Session hijack
 - Pretend to be a trusted host
 - Sequence number guessing
- · Session resets
 - Close a legitimate connection


TCP Layer Attacks


- TCP SYN Flooding
 - Exploit state allocated at server after initial SYN packet
 - Send a SYN and don't reply with ACK
 - Server will wait for 511 seconds for ACK
 - Finite queue size for incomplete connections (1024)
 - Once the queue is full it doesn't accept requests


15-411: security


TCP Layer Attacks

- TCP Session Poisoning
 - Send RST packet
 - Will tear down connection
 - Do you have to guess the exact sequence number?
 - Anywhere in window is fine
 - For 64k window it takes 64k packets to reset
 - About 15 seconds for a T1

Where do the problems come from?

- Protocol-level vulnerabilities
 - · Implicit trust assumptions in design
- Implementation vulnerabilities
 - Both on routers and end-hosts
- Incomplete specifications
 - Often left to the imagination of programmers

15-411: security

Outline - Part II

- Security Vulnerabilities
- Denial of Service
- Worms
- Countermeasures: Firewalls/IDS

15-411: security

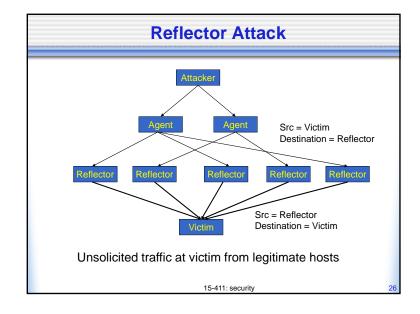
Denial of Service

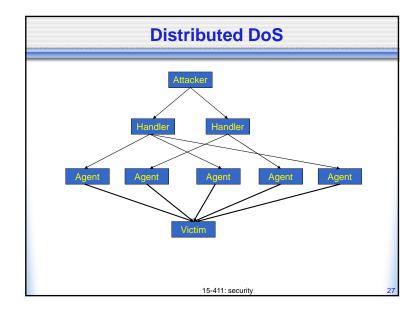
- Make a service unusable/unavailable
- · Disrupt service by taking down hosts
 - E.g., ping-of-death
- · Consume host-level resources
 - E.g., SYN-floods
- Consume network resources
 - E.g., UDP/ICMP floods

15-411: security

Simple DoS

- Attacker usually spoofs source address to hide origin
- •Aside: Backscatter Analysis
 - •When attack traffic results in replies from the victim
 - •E.g. TCP SYN, ICMP ECHO


Lots of traffic


Victim

Backscatter Analysis

- Attacker sends spoofed TCP SYN packets to www.haplessvictim.com
 - With spoofed addresses chosen at random
- My network sees TCP SYN-ACKs from <u>www.haplessvictim.com</u> at rate R
- What is the rate of the attack?
 - Assuming addresses chosen are uniform
 - (2^32/ Network Address space) * R

15-411: security

Distributed DoS Handlers are usually high volume servers Easy to hide the attack packets Agents are usually home users with DSL/Cable Already infected and the agent installed Very difficult to track down the attacker Multiple levels of indirection! Aside: How to distinguish DDos from flash crowd?

Outline - Part II

- · Security, Vulnerabilities
- Denial of Service
- Worms
- Countermeasures: Firewalls/IDS

15-411: security

Worm Overview

- Self-propagate through network
- Typical Steps in worm propagation
 - Probe host for vulnerable software
 - Exploit the vulnerability (e.g., buffer overflow)
 - Attacker gains privileges of the vulnerable program
 - Launch copy on compromised host
- · Spread at exponential rate
 - 10M hosts in < 5 minutes
 - Hard to deal with manual intervention

15-411: security

Scanning Techniques

- Random
- Local subnet
- Routing Worm
- Hitlist
- Topological

15-411: security

Random Scanning

- 32-bit randomly generated IP address
 - E.g., Slammer and Code Red I
 - What about IPv6?
- Hits black-holed IP space frequently
 - Only 28.6% of IP space is allocated
 - Detect worms by monitoring unused addresses
 - Honeypots/Honeynet

Subnet Scanning

- Generate last 1, 2, or 3 bytes of IP address randomly
- · Code Red II and Blaster
- Some scans must be completely random to infect whole internet

15-411: security

Hit List

- List of vulnerable hosts sent with payload
 - Determined before worm launch by scanning
- Boosts worm growth in the slow start phase
- Can evade common detection techniques

15-411: security

Routing Worm

- BGP information can tell which IP address blocks are allocated
- · This information is publicly available
 - http://www.routeviews.org/
 - http://www.ripe.net/ris/

15-411: security

Topological

- Uses info on the infected host to find the next target
 - Morris Worm used /etc/hosts , .rhosts
 - Email address books
 - P2P software usually store info about peers that each host connects to

Some proposals for countermeasures

- Better software safeguards
 - Static analysis and array bounds checking (lint/e-fence)
 - Safe versions of library calls
 - gets(buf) → fgets(buf, size, ...)
 - sprintf(buf, ...) → snprintf(buf, size, ...)
- Host-diversity
 - · Avoid same exploit on multiple machines
- Network-level: IP address space randomization
- Host-level solutions
 - E.g., Memory randomization, Stack guard
- · Rate-limiting: Contain the rate of spread
- · Content-based filtering: signatures in packet payloads

15-411: security

Outline - Part II

- · Security, Vulnerabilities
- Denial of Service
- Worms
- Countermeasures: Firewalls/IDS

15-411: security

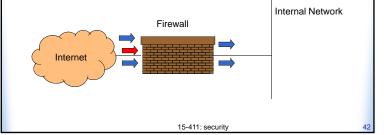
Countermeasure Overview

- High level basic approaches
 - Prevention
 - Detection
 - Resilience
- Requirements
 - Security: soundness / completeness (false positive / negative
 - Overhead
 - Usability

15-411: security

Design questions ..

- Why is it so easy to send unwanted traffic?
 - Worm, DDoS, virus, spam, phishing etc
- Where to place functionality for stopping unwanted traffic?
 - Edge vs. Core
 - Routers vs. Middleboxes
- Redesign Internet architecture to detect and prevent unwanted traffic?


Firewalls

- Block/filter/modify traffic at network-level
 - Limit access to the network
 - Installed at perimeter of the network
- · Why network-level?
 - Vulnerabilities on many hosts in network
 - Users don't keep systems up to date
 - Lots of patches to keep track of
 - Zero-day exploits

15-411: security

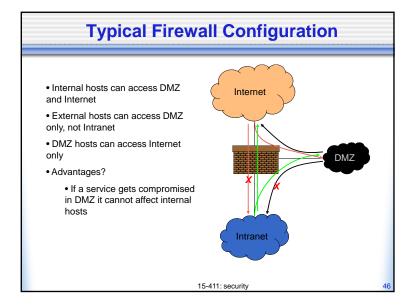
Firewalls (contd...)

- · Firewall inspects traffic through it
- · Allows traffic specified in the policy
- Drops everything else
- Two Types
 - Packet Filters, Proxies

Packet Filters

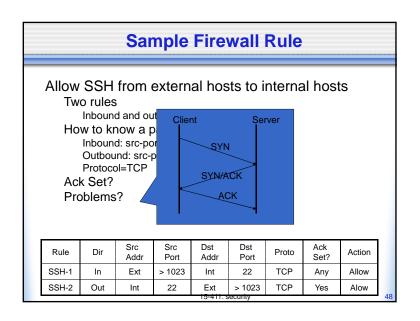
- Selectively passes packets from one network interface to another
- Usually done within a router between external and internal network
- What/How to filter?
 - Packet Header Fields
 - IP source and destination addresses
 - Application port numbers
 - ICMP message types/ Protocol options etc.
 - Packet contents (payloads)

15-411: security


Packet Filters: Possible Actions

- Allow the packet to go through
- Drop the packet (Notify Sender/Drop Silently)
- Alter the packet (NAT?)
- Log information about the packet

Some examples


- Block all packets from outside except for SMTP servers
- Block all traffic to/from a list of domains
- Ingress filtering
 - Drop pkt from outside with addresses inside the network
- · Egress filtering
 - Drop pkt from inside with addresses outside the network

15-411: security

Firewall implementation

- Stateless packet filtering firewall
- Rule → (Condition, Action)
- · Rules are processed in top-down order
 - If a condition satisfied action is taken

Default Firewall Rules

- Egress Filtering
 - Outbound traffic from external address → Drop
 - Benefits?
- Ingress Filtering
 - Inbound Traffic from internal address → Drop
 - Benefits?
- Default Deny
 - Why?

Rule	Dir	Src Addr	Src Port	Dst Addr	Dst Port	Proto	Ack Set?	Action
Egress	Out	Ext	Any	Ext	Any	Any	Any	Deny
Ingress	In	Int	Any	Int	Any	Any	Any	Deny
Default	Any	Any	Any	Any	Any	Any	Any	Deny

Packet Filters

- Advantages
 - Transparent to application/user
 - Simple packet filters can be efficient
- Disadvantages
 - Usually fail open
 - Very hard to configure the rules
 - May only have coarse-grained information?
 - Does port 22 always mean SSH?
 - Who is the user accessing the SSH?

15-411: security

Alternatives

- Stateful packet filters
 - Keep the connection states
 - Easier to specify rules
 - Problems?
 - State explosion
 - State for UDP/ICMP?
- Proxy Firewalls
 - Two connections instead of one
 - Either at transport level
 - SOCKS proxy
 - Or at application level
 - HTTP proxy

15-411: security

Proxy Firewall

- Data Available
 - Application level information
 - User information
- Advantages?
 - Better policy enforcement
 - Better logging
 - Fail closed
- Disadvantages?
 - Doesn't perform as well
 - One proxy for each application
 - Client modification

Intrusion Detection Systems

- Firewalls allow traffic only to legitimate hosts and services
- Traffic to the legitimate hosts/services can have attacks
- Solution?
 - Intrusion Detection Systems
 - Monitor data and behavior
 - Report when identify attacks

15-411: security

Classes of IDS

- · What type of analysis?
 - Signature-based
 - Anomaly-based
- Where is it operating?
 - Network-based
 - Host-based

15-411: security

Signature-based IDS

- Characteristics
 - Uses known pattern matching to signify attack
- · Advantages?
 - Widely available
 - · Fairly fast
 - Easy to implement
 - · Easy to update
- · Disadvantages?
 - · Cannot detect attacks for which it has no signature

15-411: security

Anomaly-based IDS

- Characteristics
- Uses statistical model or machine learning engine to characterize normal usage behaviors
- Recognizes departures from normal as potential intrusions
- Advantages?
- Can detect attempts to exploit new and unforeseen vulnerabilities
- Can recognize authorized usage that falls outside the normal pattern
- · Disadvantages?
- Generally slower, more resource intensive compared to signature-based IDS
- Greater complexity, difficult to configure
- Higher percentages of false alerts

Network-based IDS

- Characteristics
 - NIDS examine raw packets in the network passively and triggers alerts
- Advantages?
 - Easy deployment
 - Unobtrusive
 - Difficult to evade if done at low level of network operation
- Disadvantages?
 - Fail Open
 - Different hosts process packets differently
 - NIDS needs to create traffic seen at the end host
 - Need to have the complete network topology and complete host behavior

15-411: security

Host-based IDS

- Characteristics
 - · Runs on single host
 - Can analyze audit-trails, logs, integrity of files and directories, etc.
- Advantages
 - More accurate than NIDS
 - Less volume of traffic so less overhead
- Disadvantages
 - Deployment is expensive
 - What happens when host get compromised?

15-411: security

Summary - Part II

- · Security vulnerabilities are real!
 - Protocol or implementation or bad specs
 - Poor programming practices
 - At all layers in protocol stack
- DoS/DDoS
 - Resource utilization attacks
- Worm/Malware
 - Exploit vulnerable services
 - Exponential spread
- Countermeasures: Firewall/IDS

15-411: security

Resources

- Textbook: 8.1 8.3
- Wikipedia for overview of Symmetric/Asymmetric primitives and Hash functions.
- OpenSSL (<u>www.openssl.org</u>): top-rate open source code for SSL and primitive functions.
- "Handbook of Applied Cryptography" available free online: www.cacr.math.uwaterloo.ca/hac/