Lecture 19: Security

15-441 — Computer Networking
Peter Steenkiste

Fall 2010

With slides from: Debabrata Dash,Nick Feamster, Vyas Sekar,
and others

1

Normal Mindset

* No user would do that

* The odds of a router being misconfigured
that way is too small to worry about

15-411: security

Security Mindset

Adversaries

The adversary will do anything it can to
break your system

It will study your system and purposefully do

the worse thing it can
Might even disregard its own well being

Will attack your implementation and your
assumptions

15-411: security

Unlimited
resources

» Possible adversaries include:
+ Competitors trying h
+ Governments fying to control you_J Knows your
o source code
+ Criminals who want to use ystem for crime
+ Disgruntled employees “{the insider threat)

+ Hackers W Destructive with
+ Others we didn’t even think of /N0 ‘real” goals

* Assumptions about the adversary are
dangerous

» Security is very hard

15-411: security

11/2/2010

Flashback .. Internet design goals

Why did they leave it out?

©NOOEWNPE

Interconnection

Failure resilience

Multiple types of service

Variety of networks

Management of resources

Cost-effective

Low entry-cost

Accountability for resources
Where is security?

» Designed for connectivity

* Network designed with implicit trust
¢ Origin as a small and cooperative network
+ No “bad” guys (adversaries)

» Can'’t security be provided at the edge?
+ Encryption, Authentication etc
+ End-to-end arguments in system design

Internet Design Decisions and Security

Internet Usage and Security

* Global Addressing

(=> every sociopath is your next-door
neighbor*)

» Connection-less datagram service

(=> can'’t verify source, hard to protect
bandwidth)

* Dan Geer

15-411: security

* Anyone can connect
(=> ANYONE can connect)
* Millions of hosts run nearly identical software
(=> single exploit can create epidemic)
* Most Internet users know about as much as
Senator Stevens aka “the tubes guy”
(=> God help us all...)

15-411: security

11/2/2010

Our “Narrow” Focus

Secure Communication with an Untrusted
Infrastructure

e Yes:

+ Creating a “secure channel” for communication
(Part)
= End-to-end
* Protecting network resources and limiting
connectivity (Part I1)
= Accountability for resources (largely not end-to-end)
* No:

* Preventing software vulnerabilities & malware,
or “social engineering”.

15-411: security

15-411: security 10

Secure Communication with an Untrusted
Infrastructure

Secure Communication with an Untrusted
Infrastructure

L
>’ Mallory

oL R,
N\/("--%5
f’

By

15-411: security

11

@ISPD ?

3 (==
= <
LT A

ISPA &' s

7/

Hello, I'm
“Bob”

15-411: security 12

11/2/2010

What do we need for a secure comm
channel?

What is cryptography?

Authentication (Who am | talking to?)

Confidentiality (Is my data hidden?)

Integrity (Has my data been modified?)

Availability (Can | reach the destination?)

15-411: security

13

"cryptography is about communication in the
presence of adversaries."

- Ron Rivest

“cryptography is using math and other crazy
tricks to approximate magic”

- Unknown 441 TA

15-411: security 14

What is cryptography?

Cryptography As a Tool

Tools to help us build secure communication
channels that provide:

1) Authentication

2) Integrity
3) Confidentiality

15-411: security

15

» Using cryptography securely is not simple
» Designing cryptographic schemes correctly
is near impossible.

Today we want to give you an idea of what
can be done with cryptography.

Take a security course if you think you may
use it in the future

15-411: security 16

11/2/2010

The Great Divide

Symmetric Key: Confidentiality

Symmetric Crypto Asymmetric Crypto
(Private key) (Public key)
(E.g., AES) (E.g., RSA)
Shared secret - -
between parties? Yes No

Speed of crypto
operations

15-411: security 17

Motivating Example:

You and a friend share a key K of L random bits, and
want to secretly share message M also L bits long.

Scheme:

You send her the xor(M,K) and then she “decrypts”
using xor(M,K) again.

1) Do you get the right message to your friend?
2) Can an adversary recover the message M?
3) Can adversary recover the key K?

15-411: security

18

Symmetric Key: Confidentiality

Symmetric Key: Confidentaility

* One-time Pad (OTP) is proven “information-
theoretically secure” (Claude Shannon, 1949)
+ No information provided about the message other than its
length
* Impressive?
e Assumptions:
+ Perfectly random one-time pads
¢ One-time pad at least the length of the message
+ Never can reuse a one-time pad
¢ Adversary can never know the one-time pad

15-411: security 19

» All ciphers suffer from assumptions, but one-time pad’s
are impractical to maintain
+ Key is as long at the message
+ Keys cannot be reused
* In practice, two types of ciphers are used
that require constant length keys:

+ Stream Ciphers
Ex: RC4, A5

+ Block Ciphers
Ex: DES, AES, Blowfish

15-411: security

20

11/2/2010

Symmetric Key: Confidentiality

Symmetric Key: Confidentiality

» Stream Ciphers (ex: RC4)

Alice: &= — — [Pseudo-Random stream of L bits |
K A-B

XOR

Bob uses K, 5 as PRNG seed, and XORs encrypted text
to get the message back (just like OTP).

15-411: security 21

= Block Ciphers (ex: AES)
Block 11 Block 2 Block 3 Block 4

(fixed block size,
e.g. 128 bits)

Round #n

.‘.I

Bob breaks the ciphertext into blocks, feeds it through
decryption engine using K, g to recover the message.

15-411: security 22

Cryptographic Hash Functions

Symmetric Key: Integrity

» Consistent
hash(X) always yields same result
* One-way
given Y, can’t find X s.t. hash(X) = Y

 Collision resistant
given hash(W) = Z, can't find X such that hash(X) = Z

-

15-411: security 23

_

* Hash Message Authentication Code (HMAC)

Step #1:
L v] —

Alice creates . — -

MAC = —

K A-B
Step #2 Alice Transmlt/si/lessage & MAC Step #3

Ve Y Bob computes MAC with
[we message and Ky to veriy.

Why is this secure?
How do properties of a hash function help us?

15-411: security 24

11/2/2010

Symmetric Key: Authentication

Symmetric Key: Authentication

* You already know how to do this!
(hint: think about how we showed integrity)

Alice receives the hash, cop knows the sender

is Bob

15-411: security 25

What if Mallory overhears the hash sent by Bob, and
then “replays” it later?

(&A é Hello, I'm
Bob. Here’s
& g Caama] L

“prove” it

15-411: security 26

Symmetric Key: Authentication

Symmetric Key: Authentication

« A*“Nonce”

+ A random bitstring used only once. Alice sends nonce to Bob as a
“challenge”. Bob Replies with “fresh” MAC result.

Performs same 4’-/—
hash with K, g

and compares

results

15-411: security 27

* A “Nonce”

+ A random bitstring used only once. Alice sends nonce to
Bob as a “challenge”. Bob Replies with “fresh” MAC

result.
. ‘o,

P Mallory

If Alice sends Mallory a nonce,
she cannot compute the
corresponding MAC without K 5 g

15-411: security 28

11/2/2010

Symmetric Key Crypto Review

Diffie-Hellman key exchange

» Confidentiality: Stream & Block Ciphers
¢ Integrity: HMAC
 Authentication: HMAC and Nonce

Questions??

Are we done? Not Really:
1) Number of keys scales as O(n?)

2) How to securely share keys in the first place?

15-411: security 29

* An early (1976) way to create a shared
secret.

* Everyone knows a prime, p, and a
generator, g.

* Alice and Bob want to share a secret, but
only have internet to communicate over.

15-411: security

30

DH key exchange

DH key exchange & Man-In-The-Middle

Everyone: large prime p and generator g

Create secret: a

el
Send Bob: g2 mod p > c:_.i«"ﬁﬁfﬁ
w4

i Sy
Create secret: b
Bob

Send Alice: g mod
< g p

Compute: (g° mod p)2 Compute: (g2 mod p)°

Voila: They both know g2 which is secret!

15-411: security 31

R

cand
]
g2 mod p g¢ mod p
g¢ mod p g° mod p
v
@
P

15-411: security

32

11/2/2010

Asymmetric Key Crypto:

Asymmetric Key Crypto:

* Instead of shared keys, each person has a

“key pair”
_a@m. @™ Kz Bob’s public key
(__-v".‘f
]

@™ K, Bob's private key

= The keys are inverses, S0: K (K,(m)) =m

15-411: security

33

= Itis believed to be computationally unfeasible
to derive Kyt from Kg or to find any way to get
M from Kg(M) other than using Kg .

=> Kg can safely be made public.

Note: We will not explain the computation that Kg(m) entails, but rather
treat these functions as black boxes with the desired properties.

15-411: security 34

Asymmetric Key: Confidentiality

Asymmetric Key: Sign & Verify

== e m e @, Bob'spublic
' key
1
I ! i
: f@gKB’l Bob’s private
! 1 key
m | 1
A i
] 1
A v
encryption ciphertext decryption plaintext
e 2/00rithm algorithm [puasCEtel)

Ke (m) m = Kg? (Kg (M)

15-411: security

35

= If we are given a message M, and a value S
such that Kg(S) = M, what can we conclude?

» The message must be from Bob, because it must be
the case that S = Kz1(M), and only Bob has Kg1!

= This gives us two primitives:
= Sign(M) = Kg"}(M) = Signature S
= Verify(S, M) = test(Kz(S) == M)

15-411: security 36

11/2/2010

Asymmetric Key: Integrity & Authentication

Asymmetric Key Review:

* We can use Sign() and Verify() in a similar manner as
our HMAC in symmetric schemes.

Receiver must only check Verify(M, S)

Authentication: Nonce \

Verify(Nonce, S)

Integrity:

S = Sign(Nonce)

15-411: security 3

» Confidentiality: Encrypt with Public Key of
Receiver

* Integrity: Sign message with private key of
the sender

» Authentication: Entity being authenticated
signs a nonce with private key, signature is
then verified with the public key

But, these operations are computationally
expensive*

15-411: security

38

One last “little detail” ...

Symmetric Key Distribution

How do | get these keys in the first place??
Remember:

* Symmetric key primitives assumed Alice and Bob
had already shared a key.

* Asymmetric key primitives assumed Alice knew
Bob’s public key.

This may work with friends, but when was the last
time you saw Amazon.com walking down the street?

15-411: security 39

* How does Andrew do this?

Andrew Uses Kerberos, which relies on a
Key Distribution Center (KDC) to establish
shared symmetric keys.

15-411: security

40

11/2/2010

10

Key Distribution Center (KDC)

Key Distribution Center (KDC)

 Alice, Bob need shared symmetric key.

» KDC: server shares different secret key with each
registered user (many users)

* Alice, Bob know own symmetric keys, K, «pc Kg.kpe » for
communicating with KDC.

15-411: security

41

Q: How does KDC allow Bob, Alice to determine shared symmetric
secret key to communicate with each other?

_ KkDC
i) generates

— Kakoc(AB) — HH y| Rl g,
GITEE (',_,.&:".‘f

use R1to
Kgkoc(AR1) = communicate

with Alice

]
A”ceﬁAZ(Rl, Kg.kpc(ARL)) Bob knows to
knows

»
»

a

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

15-411: security

42

How Useful is a KDC?

Certification Authorities

* Must always be online to support secure
communication

* KDC can expose our session keys to others!

» Centralized trust and point of failure.

In practice, the KDC model is mostly used

within single organizations (e.g. Kerberos)

but not more widely.

15-411: security

43

e Certification authority (CA): binds public key to
particular entity, E.
« An entity E registers its public key with CA.
+ E provides “proof of identity” to CA.
+ CA creates certificate binding E to its public key.
¢ Certificate contains E’s public key AND the CA'’s signature of

E’s public key.
Boh:s % CA
p“f(’g; generates

S = Sign(Kg)

Y1l

identifying . .
information (-—f_f'..e

15-411: security

=

Ke

7 cA : certificate = Bob's
““““ A pivate £ O public key and
POVt i EER key Ko, signature by CA

44

11/2/2010

11

Certification Authorities

Certificate Contents

* When Alice wants Bob’s public key:

+ Gets Bob's certificate (Bob or elsewhere).
+ Use CA'’s public key to verify the signature within Bob’s
certificate, then accepts public key

Ke ' If signature
Verify(S, Kg) is valid, use
KB
CA & e=
public &
key @
i KCA
g
Ay
I\.l"
15-411: security 45

« info algorithm and key value itself (not shown)

| — = Cert owner
: = Certissuer

Y = Valid dates
%’&m Ejﬁ:‘&m‘/ = Fingerprint
mh N |_— of signature

e g

Co=]
15-411: security

46

Which Authority Should You Trust?

Transport Layer Security (TLS)

*

*

Today: many authorities
What about a shared Public Key
Infrastructure (PKI)?

A system in which “roots of trust” authoritatively
bind public keys to real-world identities

So far it has not been very successful

15-411: security 47

« Used for protocols like HTTPS

e Special TLS socket layer between application and
TCP (small changes to application).

< Handles confidentiality, integrity, and authentication.

e Uses “hybrid” cryptography.

15-411: security

48

11/2/2010

12

Setup Channel with TLS “Handshake”

How TLS Handles Data

=] Handshake Steps:

! 1) Client and server negotiate
exact cryptographic protocols
S5L Client SEL Server
ClientHello ———
«——— ServerHello
«——————————— Certificate
«——— ServerHeloDone
ClientKeyExchange ———»
ChangeCipherSpec ———»

2) Client validates public key
certificate with CA public key.

3) Client encrypts secret random
value with server’s key, and
sends it as a challenge.

4) Server decrypts, proving it has

Finished the corresponding private key.

«——— ChangeCipherSpec
4 Finished

5) This value is used to derive
symmetric session keys for
encryption & MACs.

15-411: security 49

1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”,
which includes a short header and data that is encrypted, as well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for transmission.

15-411: security

50

Summary — Part |

Resources

 Internet design and growth => security challenges
» Symmetric (pre-shared key, fast) and asymmetric
(key pairs, slow) primitives provide:
= Confidentiality
= Integrity
= Authentication
» “Hybrid Encryption” leverages strengths of both.
« Great complexity exists in securely acquiring keys.

» Crypto is hard to get right, so use tools from others,
don’t design your own (e.g. TLS).

15-411: security 51

» Textbook: 8.1 — 8.3

» Wikipedia for overview of Symmetric/Asymmetric primitives
and Hash functions.

* OpenSSL (): top-rate open source code
for SSL and primitive functions.

» “Handbook of Applied Cryptography” available free online:
www.cacr.math.uwaterloo.ca/hac/

15-411: security

52

11/2/2010

13

