“. 15-441 Computer Networking

Lecture 17 —TCP in detail
Peter Steenkiste

Fall 2010
www.cs.cmu.edu/~prs/15-441-F10

Good Ideas So Far...

N

e Flow control
¢ Stop & wait
« Sliding window
* Loss recovery
* Timeouts

¢ Acknowledgement-driven recovery
» Selective repeat
« Cumulative acknowledgement

» Congestion control
* AIMD - fairness and efficiency

* How does TCP actually implement these?

Outline “

» TCP connection setup/data transfer

» TCP reliability

» TCP congestion avoidance

Sequence Number Space

"N

» Each byte in byte stream is numbered.
» 32 bit value
* Wraps around
* Initial values selected at start up time
* TCP breaks up the byte stream into packets.
» Packet size is limited to the Maximum Segment Size
» Each packet has a sequence number.
 Indicates where it fits in the byte stream

13fSO 1451350 160150 17f50

packet 8 packet 9 packet 10

Establishing Connection:
Three-Way handshake

«

» Each side notifies other of
starting sequence number it
will use for sending

e Why not simply chose 07?
* Must avoid overlap with earlier

|ncarn§t|9n ACK: SeqC+1
* Security issues SYN: SeqS

SYN: SeqC

» Each side acknowledges
other’s sequence number

¢ SYN-ACK: Acknowledge
sequence number + 1

ACK: SeqS+1

» Can combine second SYN _
with first ACK Client

Server

TCP Connection Setup Example

N

S 4019802004:4019802004(0) win 65535
<mss 1260,nop,nop,sackOK> (DF)

S 3428951569:3428951569(0) ack 4019802005 win 5840
<mss 1460, nop,nop,sackOK> (DF)

. ack 3428951570 win 65535 (DF)

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80:

09:23:33.118329 1P 192.216.219.96.80 > 128.2.222.198.3123:

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80:

e Client SYN

« SeqC: Seq. #4019802004, window 65535, max. seg. 1260
e Server SYN-ACK+SYN

« Receive: #4019802005 (= SeqC+1)

* SegS: Seq. #3428951569, window 5840, max. seg. 1460
¢ Client SYN-ACK

* Receive: #3428951570 (= SeqS+1)

TCP State Diagram: Connection Setup

L\

Client
CLOSED ; active OPEN
Server create TCB
passive OPEN CLOSE Snd SYN
create TCB delete TCB
[[LisTEN | _CLOSE
delete TCB

rcv SYN SEND

snd SYNACK snd SYN
SYN rev SYN YN
RCVD snd ACK =R

rev ACK of SYN Rov SYN, ACK
Snd ACK
CLOSE

A
Send FIN ESTAB

Tearing Down Connection

"N

« Either side can initiate tear
down A
* Send FIN signal FIN, SeqA
¢ “I'm not going to send any more
data” ACK, SeqA+1

» Other side can continue

sending data ACK\‘

FIN, SeqB
ACK, SeqB+1

< Half open connection
¢ Must continue to acknowledge
e Acknowledging FIN

« Acknowledge last sequence
number + 1

TCP Connection Teardown Example “,

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616:
F 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474:
F 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616:
. ack 1909787690 win 65434 (DF)

State Diagram: Connection Tear-down i‘,

e Session
« Echo client on 128.2.222.198, server on 128.2.210.194
¢ Client FIN
¢ SeqC: 1489294581
e Server ACK + FIN
« Ack: 1489294582 (= SeqC+1)
* SeqS: 1909787689
e Client ACK
« Ack: 1909787690 (= SeqS+1)

CLOSE .
<end FIN Active Close| ESTAB

CLOSE reVFIN _ passive Close
T send FIN send ACK [CLOSE
WAIT-1 | VAT
rcv FIN
ACH SndACK G-OSE
cv FIN+ACK shd FIN
FIN WAIT: 5‘ snd ACK |CLOSING [-AST-ACK
rev ACK of FIN rev ACK pf FIN
[
A sl e 2oED
rcv FIN - Timeout=2msl \—/
snd ACK delete TCB

Outline “

* TCP connection setup/data transfer
» TCP reliability

» TCP congestion avoidance

Reliability Challenges i‘

« Congestion related losses
» Variable packet delays

* What should the timeout be?
» Reordering of packets

« How to tell the difference between a delayed packet
and a lost one?

12

TCP = Go-Back-N Variant “,

 Sliding window with cumulative acks

» Receiver can only return a single “ack” sequence number to the
sender.

« Acknowledges all bytes with a lower sequence number
« Starting point for retransmission
» Duplicate acks sent when out-of-order packet received
» But: sender only retransmits a single packet.
* Reason???
* Only one that it knows is lost
* Network is congested - shouldn’t overload it
 Error control is based on byte sequences, not packets.

« Retransmitted packet can be different from the original lost packet
- Why?

Round-trip Time Estimation i‘,

« Wait at least one RTT before retransmitting

» Importance of accurate RTT estimators:

e Low RTT estimate
« unneeded retransmissions

e High RTT estimate
¢ poor throughput
RTT estimator must adapt to change in RTT
« But not too fast, or too slow!
e Spurious timeouts

e “Conservation of packets” principle — never more than a
window worth of packets in flight

Original TCP Round-trip Estimator “

¢ Round trip times s
exponentially . 1

averaged:
e New RTT =« (old RTT)
+ (1 - o) (new sample)
» Recommended value os {

fora:0.8-0.9

* 0.875 for most TCP’s
¢ Retransmit timer setto (b * RTT), where b = 2
< Every time timer expires, RTO exponentially backed-off

* Not good at preventing spurious timeouts
¢ Why?

RTT Sample Ambiguity n

A B A B
O

RTO

Original transmissjon

lRTO

Sample
RTT

s
Stransy, ission

Sample I
RTT

« Karn's RTT Estimator

« If a segment has been retransmitted:
¢ Don't count RTT sample on ACKs for this segment
« Keep backed off time-out for next packet
¢ Reuse RTT estimate only after one successful transmission
16

Jacobson’s Retransmission Timeout i‘,

» Key observation:
« At high loads, round trip variance is high
 Solution:

¢ Base RTO on RTT and standard deviation
*« RTO = RTT + 4 * rttvar

e new_rttvar = * dev + (1- B) old_rttvar
e Dev = linear deviation

* Inappropriately named — actually smoothed linear
deviation

17

Timestamp Extension i‘

» Used to improve timeout mechanism by more
accurate measurement of RTT

* When sending a packet, insert current time into
option
4 bytes for time, 4 bytes for echo a received timestamp
* Receiver echoes timestamp in ACK
¢ Actually will echo whatever is in timestamp
* Removes retransmission ambiguity
e Can get RTT sample on any packet

Timer Granularity “

» Many TCP implementations set RTO in multiples
of 200,500,1000ms
* Why?
¢ Avoid spurious timeouts — RTTs can vary quickly due to
cross traffic

» Make timers interrupts efficient

» What happens for the first couple of packets?
e Pick a very conservative value (seconds)

19

Fast Retransmit “

* What are duplicate acks (dupacks)?
* Repeated acks for the same sequence
* When can duplicate acks occur?
e Loss
» Packet re-ordering
e Window update — advertisement of new flow control
window
e Assume re-ordering is infrequent and not of large
magnitude
» Receipt of 3 or more duplicate acks is indication of loss
e Don’t wait for timeout to retransmit packet
* When does this fail?

20

Fast Retransmit i‘. TCP (Reno variant) “.
] L]
- L}
| L]
: j
- L}
: % -
- - ° Now what? - timeout
X — Retransmission X .
- (e} ooo: PU— . L] © 0000
Sequence No = o Duplicate Acks Sequence No = o
- o L} o
- [*] L] o
- o L} o
- [*] L ! o
L] o] L o
|] [°] | o
| | (<] L] o
|] o | o
| | o L] (<]
| o L ! (<]
m o m o
M Packets M Packets
@Acks Time @Acks Time
21 22

SACK “ SACK i‘

» Basic problem is that cumulative acks provide little
information

» Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
* Implemented as a TCP option Sequence No
» Encoded as a set of received byte ranges (max of 4

ranges/often max of 3)
* When to retransmit?

« Still need to deal with reordering - wait for out of order .

Ml Packets
by 3pkt
y opKis @ACcks

e R
"

Now what? — send
n retransmissions as soon
as detected

cooommEEEEE]X
©o000000

commmm

omm

Time

23 24

Performance Issues

«

* Timeout >> fast rexmit

Need 3 dupacks/sacks

Not great for small transfers
« Don't have 3 packets outstanding

What are real loss patterns like?

25

Outline

N

» TCP connection setup/data transfer

* TCP reliability

» TCP congestion avoidance

26

Additive Increase/Decrease

L\

» Both X; and X,

increase/ decrease
by the same amount
over time

¢ Additive increase
. . User 2's
improves fairness and | ailocation To
additive decrease e
reduces fairness

Faimess Line

S _ Efficiency Line

User 1's Allocation x;

27

Muliplicative Increase/Decrease

"N

» Both X; and X,

increase by the
same factor over 1
time

User 2's

* Extension from Allocation
origin — constant * To
fairness

Fairness Line

Efficiency Line

N

User 1's Allocation x;

28

What is the Right Choice? N

e Constraints limit
us to AIMD

* Improves or
keeps fairness s
constant at Allocation
each step *

* AIMD moves
towards optimal Effciency Line
point

Fairness Line

User 1's Allocation x;

29

TCP Congestion Control i‘

* Changes to TCP motivated by ARPANET
congestion collapse
» Basic principles
« AIMD
» Packet conservation
» Reaching steady state quickly
» ACK clocking

30

AIMD “

 Distributed, fair and efficient

» Packet loss is seen as sign of congestion and results in a
multiplicative rate decrease
« Factor of 2

e TCP periodically probes for available bandwidth by
increasing its rate

Rate

Timé

31

Implementation Issue n

e Operating system timers are very coarse — how to pace
packets out smoothly?
e Implemented using a congestion window that limits how
much data can be in the network.
* TCP also keeps track of how much data is in transit
» Data can only be sent when the amount of outstanding
data is less than the congestion window.

« The amount of outstanding data is increased on a “send” and
decreased on “ack”

» (last sent — last acked) < congestion window

» Window limited by both congestion and buffering
* Sender’'s maximum window = Min (advertised window, cwnd)

32

Packet Conservation “,

» At equilibrium, inject packet into network only

when one is removed
« Sliding window and not rate controlled
 But still need to avoid sending burst of packets >
would overflow links
* Need to carefully pace out packets
* Helps provide stability
* Need to eliminate spurious retransmissions
e Accurate RTO estimation
« Better loss recovery techniques (e.g. fast retransmit)

33

TCP Packet Pacing “.

» Congestion window helps to “pace” the transmission of

data packets
* In steady state, a packet is sent when an ack is received

< Data transmission remains smooth, once it is smooth
e Self-clocking behavior

Py —
Ips==s=—sre I
Sender Receiver
L&. I — Ab| j m ti. —

34

Congestion Avoidance “

¢ If loss occurs when cwnd =W
» Network can handle 0.5W ~ W segments
e Set cwnd to 0.5W (multiplicative decrease)

» Upon receiving ACK

« Increase cwnd by (1 packet)/cwnd
* Whatis 1 packet? - 1 MSS worth of bytes
 After cwnd packets have passed by - approximately increase

of 1 MSS
* Implements AIMD

35

Congestion Avoidance Sequence Plot i‘

000000000 EEEpEmmgmEm

Sequence No

00000000 pupuugpmm

0000000 NNENEEEN

M Packets
@Acks

Time

36

Congestion Avoidance Behavior “,

Congestion
Window

7 >
Time

Packet loss c C“tt. Grabbing

+ retransmit on_gt(ejs lon back
Window Bandwidth
and Rate

37

How to Change Window i‘,

* When a loss occurs have W packets outstanding

* New cwnd = 0.5 * cwnd
e How to get to new state without losing ack clocking?

38

Fast Recovery “

» Each duplicate ack notifies sender that single
packet has cleared network
* When < cwnd packets are outstanding
¢ Allow new packets out with each new duplicate
acknowledgement

» Behavior
» Sender is idle for some time — waiting for %2 cwnd worth

of dupacks
e Transmits at original rate after wait
» Ack clocking rate is same as before loss

39

Fast Recovery i‘

EmEmEm
00000

/6'

Sent for each dupack after

Sequence No W/2 dupacks arrive

é-

000000

M Packets
@Acks

CocooNEEEEEEX

Time

40

10

Important Lessons

«

» TCP state diagram > setup/teardown

e TCP timeout calculation = how is RTT estimated

* Modern TCP loss recovery
e Why are timeouts bad?
* How to avoid them? - e.g. fast retransmit

41

11

