
1

15-441 Computer Networking

Lecture 17 –TCP in detail
Peter Steenkiste

Fall 2010
www.cs.cmu.edu/~prs/15-441-F10

Good Ideas So Far…

• Flow control
• Stop & waitp
• Sliding window

• Loss recovery
• Timeouts
• Acknowledgement-driven recovery

• Selective repeat
• Cumulative acknowledgement

C i l

2

• Congestion control
• AIMD  fairness and efficiency

• How does TCP actually implement these?

Outline

TCP ti t /d t t f• TCP connection setup/data transfer

• TCP reliability

3

• TCP congestion avoidance

Sequence Number Space

• Each byte in byte stream is numbered.
• 32 bit value
• Wraps around
• Initial values selected at start up time

• TCP breaks up the byte stream into packets.
• Packet size is limited to the Maximum Segment Size

• Each packet has a sequence number.
• Indicates where it fits in the byte stream

4

packet 8 packet 9 packet 10

13450 14950 16050 17550

2

Establishing Connection:
Three-Way handshake
• Each side notifies other of

starting sequence number it
will use for sending SYN: SeqCwill use for sending
• Why not simply chose 0?

• Must avoid overlap with earlier
incarnation

• Security issues

• Each side acknowledges
other’s sequence number

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

5

q
• SYN-ACK: Acknowledge

sequence number + 1

• Can combine second SYN
with first ACK Client Server

TCP Connection Setup Example

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80:
S 4019802004:4019802004(0) win 65535
<mss 1260,nop,nop,sackOK> (DF)

• Client SYN

, p, p, ()

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123:
S 3428951569:3428951569(0) ack 4019802005 win 5840
<mss 1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80:
. ack 3428951570 win 65535 (DF)

6

• SeqC: Seq. #4019802004, window 65535, max. seg. 1260
• Server SYN-ACK+SYN

• Receive: #4019802005 (= SeqC+1)
• SeqS: Seq. #3428951569, window 5840, max. seg. 1460

• Client SYN-ACK
• Receive: #3428951570 (= SeqS+1)

TCP State Diagram: Connection Setup

CLOSED active OPEN
create TCB

Client

Server

SYNSYN

LISTEN

Snd SYN
create TCB
passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

rcv SYN

7

SENTRCVD

ESTABSend FIN
CLOSE

rcv ACK of SYN
Snd ACK
Rcv SYN, ACK

snd ACK

Tearing Down Connection

• Either side can initiate tear
down A B
• Send FIN signal
• “I’m not going to send any more

data”

• Other side can continue
sending data
• Half open connection

M t ti t k l d

FIN, SeqA

ACK, SeqA+1

ACK

Data

8

• Must continue to acknowledge

• Acknowledging FIN
• Acknowledge last sequence

number + 1

ACK, SeqB+1

FIN, SeqB

3

TCP Connection Teardown Example

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616:
F 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09 54 17 585732 IP 128 2 210 194 6616 128 2 222 198 4474

• Session
• Echo client on 128.2.222.198, server on 128.2.210.194

• Client FIN

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474:
F 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616:
. ack 1909787690 win 65434 (DF)

9

• SeqC: 1489294581
• Server ACK + FIN

• Ack: 1489294582 (= SeqC+1)
• SeqS: 1909787689

• Client ACK
• Ack: 1909787690 (= SeqS+1)

State Diagram: Connection Tear-down

CLOSE

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

snd FIN
CLOSE

send FIN
CLOSE

LAST-ACKFIN WAIT-2

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

snd ACK
rcv FIN+ACK

ACK

Active Close

Passive Close

10

CLOSING

TIME WAIT

rcv ACK of FIN

LAST ACK

CLOSED

FIN WAIT 2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

rcv ACK of FIN

snd ACK

Outline

TCP ti t /d t t f• TCP connection setup/data transfer

• TCP reliability

11

• TCP congestion avoidance

Reliability Challenges

• Congestion related losses
• Variable packet delays• Variable packet delays

• What should the timeout be?
• Reordering of packets

• How to tell the difference between a delayed packet
and a lost one?

12

4

TCP = Go-Back-N Variant

• Sliding window with cumulative acks
• Receiver can only return a single “ack” sequence number to the

dsender.
• Acknowledges all bytes with a lower sequence number
• Starting point for retransmission
• Duplicate acks sent when out-of-order packet received

• But: sender only retransmits a single packet.
• Reason???

• Only one that it knows is lost

13

• Network is congested  shouldn’t overload it

• Error control is based on byte sequences, not packets.
• Retransmitted packet can be different from the original lost packet

– Why?

Round-trip Time Estimation

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:Importance of accurate RTT estimators:

• Low RTT estimate
• unneeded retransmissions

• High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast or too slow!

14

• But not too fast, or too slow!
• Spurious timeouts

• “Conservation of packets” principle – never more than a
window worth of packets in flight

Original TCP Round-trip Estimator

• Round trip times
exponentially 2

2.5

p y
averaged:
• New RTT =  (old RTT)

+ (1 - ) (new sample)
• Recommended value

for : 0.8 - 0.9
• 0.875 for most TCP’s

0

0.5

1

1.5

R t it ti t t (b * RTT) h b 2

15

• Retransmit timer set to (b * RTT), where b = 2
• Every time timer expires, RTO exponentially backed-off

• Not good at preventing spurious timeouts
• Why?

RTT Sample Ambiguity

A B A B

X

Sample
RTT

RTO

Sample
RTT

RTO
X

16

• Karn’s RTT Estimator
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this segment
• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful transmission

5

Jacobson’s Retransmission Timeout

• Key observation:
At hi h l d d t i i i hi h• At high loads, round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation

• RTO = RTT + 4 * rttvar
• new rttvar =  * dev + (1- ) old rttvar

17

_  () _
• Dev = linear deviation
• Inappropriately named – actually smoothed linear

deviation

Timestamp Extension

• Used to improve timeout mechanism by more
accurate measurement of RTT

• When sending a packet, insert current time into
option
• 4 bytes for time, 4 bytes for echo a received timestamp

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

18

• Removes retransmission ambiguity
• Can get RTT sample on any packet

Timer Granularity

• Many TCP implementations set RTO in multiples
of 200 500 1000msof 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary quickly due to

cross traffic
• Make timers interrupts efficient

• What happens for the first couple of packets?

19

What happens for the first couple of packets?
• Pick a very conservative value (seconds)

Fast Retransmit

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequenceepeated ac s o t e sa e seque ce

• When can duplicate acks occur?
• Loss
• Packet re-ordering
• Window update – advertisement of new flow control

window
Assume re ordering is infrequent and not of large

20

• Assume re-ordering is infrequent and not of large
magnitude
• Receipt of 3 or more duplicate acks is indication of loss
• Don’t wait for timeout to retransmit packet
• When does this fail?

6

Fast Retransmit

Sequence No Duplicate Acks

RetransmissionX

21

Time

Packets

Acks

TCP (Reno variant)

XX

Sequence No
X

X

X

Now what? - timeout

22

Time

Packets

Acks

SACK

• Basic problem is that cumulative acks provide little
informationinformation

• Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
• Implemented as a TCP option
• Encoded as a set of received byte ranges (max of 4

ranges/often max of 3)

23

g)
• When to retransmit?

• Still need to deal with reordering  wait for out of order
by 3pkts

SACK

XX

Sequence No
X

X

X

Now what? – send
retransmissions as soon
as detected

24

Time

Packets

Acks

7

Performance Issues

• Timeout >> fast rexmit

• Need 3 dupacks/sacks

• Not great for small transfers
• Don’t have 3 packets outstanding

25

• What are real loss patterns like?

Outline

TCP ti t /d t t f• TCP connection setup/data transfer

• TCP reliability

26

• TCP congestion avoidance

Additive Increase/Decrease

• Both X1 and X2
increase/ decrease

T0

T1

Fairness Line

User 2’s
Allocation

x2

by the same amount
over time
• Additive increase

improves fairness and
additive decrease
reduces fairness

27

Efficiency Line

User 1’s Allocation x1

Muliplicative Increase/Decrease

• Both X1 and X2
increase by theincrease by the
same factor over
time
• Extension from

origin – constant
fairness

T0

T1

Fairness Line

User 2’s
Allocation

x2

28

Efficiency Line

User 1’s Allocation x1

8

What is the Right Choice?

• Constraints limit
t AIMDus to AIMD

• Improves or
keeps fairness
constant at
each step

• AIMD moves

x0

x1

x2

Fairness Line

User 2’s
Allocation

x2

29

towards optimal
point

Efficiency Line

User 1’s Allocation x1

TCP Congestion Control

• Changes to TCP motivated by ARPANET
congestion collapsecongestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly

30

Reaching steady state quickly
• ACK clocking

AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and results in a g g

multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth by
increasing its rate

31
Time

Rate

Implementation Issue

• Operating system timers are very coarse – how to pace
packets out smoothly?p y

• Implemented using a congestion window that limits how
much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and

32

The amount of outstanding data is increased on a send and
decreased on “ack”

• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window, cwnd)

9

Packet Conservation

• At equilibrium, inject packet into network only
when one is removedwhen one is removed
• Sliding window and not rate controlled
• But still need to avoid sending burst of packets 

would overflow links
• Need to carefully pace out packets
• Helps provide stability

N d li i i i i

33

• Need to eliminate spurious retransmissions
• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast retransmit)

• Congestion window helps to “pace” the transmission of
data packets

TCP Packet Pacing

p
• In steady state, a packet is sent when an ack is received

• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

P
Pb

34

Pr

ArAb

ReceiverSender

As

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segmentsNetwork can handle 0.5W W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet?  1 MSS worth of bytes
• After cwnd packets have passed by  approximately increase

f 1 MSS

35

of 1 MSS

• Implements AIMD

Congestion Avoidance Sequence Plot

Sequence No

36

Time

Packets

Acks

10

Congestion Avoidance Behavior

Congestion
Window

37

Time
Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

How to Change Window

• When a loss occurs have W packets outstanding
• New cwnd = 0 5 * cwnd• New cwnd = 0.5 cwnd

• How to get to new state without losing ack clocking?

38

Fast Recovery

• Each duplicate ack notifies sender that single
packet has cleared networkp

• When < cwnd packets are outstanding
• Allow new packets out with each new duplicate

acknowledgement
• Behavior

• Sender is idle for some time – waiting for ½ cwnd worth
of dupacks

39

of dupacks
• Transmits at original rate after wait

• Ack clocking rate is same as before loss

Fast Recovery

Sequence No
Sent for each dupack after

W/2 dupacks arrive
X

40

Time

Packets

Acks

11

Important Lessons

• TCP state diagram  setup/teardown

• TCP timeout calculation  how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?

41

• How to avoid them?  e.g. fast retransmit

