“ 15-441 Computer Networking

Lecture 15 — Transport Protocols
Srini Seshan

Fall 2010
www.cs.cmu.edu/~prs/15-441-F10

Outline

N

» Transport introduction

 Error recovery & flow control

Transport Protocols “

* Lowest level end-to-
end protocol.

* Header generated by
sender is interpreted
only by the destination

* Routers view transport
header as part of the Transport g g Transport
payload

-] [+ — — |

Datalink peatated KCmimiall Datalink

Physical Physical

router

Functionality Split

"N

* Network provides best-effort delivery

* End-systems implement many functions
* Reliability

In-order delivery

Demultiplexing

* Message boundaries

» Connection abstraction

e Congestion control

Transport Protocols

«

» UDP provides just integrity and demux

e TCP adds...
» Connection-oriented
* Reliable
e Ordered
* Point-to-point
e Byte-stream
 Full duplex

¢ Flow and congestion controlled

UDP: User Datagram Protocol [RFC 768] i‘

e “No frills,” “bare bones”
Internet transport
protocol

» “Best effort” service,
UDP segments may be:
¢ Lost
« Delivered out of order to
app
» Connectionless:

* No handshaking between
UDP sender, receiver

* Each UDP segment
handled independently of
others

Why is there a UDP?

* No connection establishment
(which can add delay)

» Simple: no connection state
at sender, receiver

* Small header

* No congestion control: UDP
can blast away as fast as
desired

UDP, cont.

«N

« Often used for
streaming

multimedia apps Length, in

bytes of UDP]
segment,
including

e Other UDP uses header

¢ Loss tolerant
* Rate sensitive

(why?):
¢ DNS, SNMP
* Reliable transfer

over UDP

e Must be at
application layer

« Application-specific
error recovery

32 bits

Source port# | Dest port #

[~Length Checksum

Application
data
(message)

UDP segment format

UDP Checksum

"N

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment — optional use!

Sender:

» Treat segment contents as
sequence of 16-bit integers

* Checksum: addition (1's

complement sum) of segment

contents

¢ Sender puts checksum value
into UDP checksum field

Receiver:
* Compute checksum of
received segment

¢ Check if computed checksum
equals checksum field value:

* NO - error detected
e YES - no error detected

But maybe errors
nonethless?

High-Level TCP Characteristics

«

* Protocol implemented entirely at the ends

* Fate sharing

» Protocol has evolved over time and will continue

to do so

* Nearly impossible to change the header

 Use options to add information to the header
* These do change sometimes

» Change processing at endpoints
» Backward compatibility is what makes it TCP

TCP Header

N

Flags: SYN
FIN
RESET
PUSH
URG
ACK

Source port ‘ Destination port

Sequence number

Acknowledgement

Heren‘ o‘ Flags | Advertised window

Checksum

Urgent pointer

Options (variable)

Data

Evolution of TCP

1975
Three-way handshake

«N

1984

Nagel's algorithm

" to reduce overhead 1987
Raymond Tomlinson of small packets; Karn's algorithm 1990
In SIGCOMM 75 predicts congestion to better estimate 4.38SD Reno
collapse round-trip time fast retransmit
delayed ACK’s
1983
BSD Unix 4.2 1986 1988
1974 supports TCP/IP Congestion Van Jacghson's
TCP described by collapse algorithms
Vint Cerf and Bob Kahn observed congestion avoidance
In IEEE Trans Comm 1982 and congestion control
TCP&IP (most implemented in
RFC 793 & 791 4.3BSD Tahoe)
 GALLELTE T]\ >
1975 1980 1985 1990

TCP Through the 1990s

"N

1996
Tce SACK TCP
(Braden) (Floyd et al)
Transaction Selective
Acknowledgement
1993 1994 1996 1996
TCP Vegas ECN Hoe FACK TCP
(Brakmo et al) (Floyd) NewReno startup (Mathis et al)
delay-based Explicit and loss recovery extension to SACK
congestion avoidance Congestion
Notification
] >
T T T >
1993 1994 1996

12

Outline i‘,

* Transport introduction

» Error recovery & flow control

13

Stop and Wait

N

¢ ARQ
* Receiver sends

acknowledgement (ACK)
when it receives packet

« Sender waits for ACK and
timeouts if it does not
arrive within some time
period

» Simplest ARQ protocol

» Send a packet, stop and
wait until ACK arrives

Time

Sender

___Timeout

Receiver

Packet

ACK

T—=st__

Recovering from Error “

f"'%‘ -1 PaCket ;"%
3 s £ 3
Q. Q! o! \(\
I<H ACK =4 g O
Time| ! g%g"”—_ =4 £ v
E E acket
——Packe | —Pack, :
i t ; et i
2 o g | et
SR g A — S
ACK lost Packet lost Early timeout
DUPLICATE

PACKETS!!

15

Problems with Stop and Wait

"N

* How to recognize a duplicate

* Performance

e Can only send one packet per round trip

16

How to Recognize Resends? i‘,

» Use sequence numbers
¢ both packets and acks Pkt o

» Sequence # in packet is finite

- How big should it be? O
 For stop and wait? Pkt o

 One bit —won’t send seq #1 oK
until received ACK for seq #0 L
RSB

17

How to Keep the Pipe Full? “

* Send multiple packets without
waiting for first to be acked
* Number of pkts in flight = window

» Reliable, unordered delivery
» Several parallel stop & waits
» Send new packet after each ack

¢ Sender keeps list of unack’ed packets;
resends after timeout

* Receiver same as stop & wait
e How large a window is needed?

¢ Suppose 10Mbps link, 4ms delay,
500byte pkts

74

« 1?7107 20?
* Round trip delay * bandwidth
capacity of pipe

Sliding Window "N

» Reliable, ordered delivery
* Receiver has to hold onto a packet until all prior
packets have arrived
* Why might this be difficult for just parallel stop & wait?
» Sender must prevent buffer overflow at receiver
 Circular buffer at sender and receiver
» Packets in transit < buffer size

¢ Advance when sender and receiver agree packets at
beginning have been received

19

Sender/Receiver State m

Sender Receiver
Max ACK received Next segnum Next expected Max acceptable
! ! ! !
Sender window Receiver window
I Sent & Acked D Sent Not Acked I Received & Acked D Acceptable Packet
I OK to Send D Not Usable D Not Usable

20

Sequence Numbers i\,

» How large do sequence numbers need to be?
* Must be able to detect wrap-around
» Depends on sender/receiver window size
- Eg.
* Max seq =7, send win=recv win=7
e If pkts 0..6 are sent succesfully and all acks lost
« Receiver expects 7,0..5, sender retransmits old 0..6!!!
* Max sequence must be > send window + recv window

21

Window Sliding — Common Case l‘,

¢ On reception of new ACK (i.e. ACK for something that was
not acked earlier)
* Increase sequence of max ACK received
» Send next packet
¢ On reception of new in-order data packet (next expected)
* Hand packet to application
» Send cumulative ACK — acknowledges reception of all packets up
to sequence number
* Increase sequence of max acceptable packet

22

Loss Recovery “

» On reception of out-of-order packet

¢ Send nothing (wait for source to timeout)

e Cumulative ACK (helps source identify loss)
» Timeout (Go-Back-N recovery)

 Set timer upon transmission of packet

¢ Retransmit all unacknowledged packets
» Performance during loss recovery

» No longer have an entire window in transit

e Can have much more clever loss recovery

23

Go-Back-N in Action i‘

sender receiver
send pkiQ
\—b rev pktQ
send pktl send ACKO
| ; rcv pht)
send pkf2 “'\\"le?:ssj send ACK1
send pkid
(waif) rev pktd, discard
send ACK]
rev ACKOQ
send pkid
- K1 rcv pkid, discard
s ¢ *ndAK
rcv pkis, discard

pkt2 timeout send ACK]

send pkf2 \’:
send pkid \‘ rev pkt2, deliver

send pkid

send ACK& :
send pkts rcv pkid, deliver
\ send ACK3

24

Selective Repeat m

* Receiver individually acknowledges all correctly
received pkts
« Buffers packets, as needed, for eventual in-order delivery
to upper layer
» Sender only resends packets for which ACK not
received
» Sender timer for each unACKed packet
* Sender window
¢ N consecutive seq #'s
» Again limits seq #s of sent, unACKed packets

25

Selective Repeat: Sender, Receiver
Windows

N

send_base nextsegnum direaid

ack’'ed

v v
T
11 1 || vetack'ed
t_ whdow size—%
i N
(a) sender view of sequence numbers

out of order
l (buffered) but

¥ v
, 2

window size —4
N
rev_base

(b) receiver view of sequence numbers

already ack’ed

usable, not
yet sent

[I not usable

acceptable
(within window)

[| not usable

26

Important Lessons “

» Transport service
e UDP - mostly just IP service
» TCP - congestion controlled, reliable, byte stream
» Types of ARQ protocols
 Stop-and-wait - slow, simple
e Go-back-n = can keep link utilized (except w/ losses)
 Selective repeat > efficient loss recovery
 Sliding window flow control
» Addresses buffering issues and keeps link utilized

27

Next Lecture

"N

e Congestion control

« TCP Reliability

28

Ponder This... i‘,

A bus station is where a bus stops.
A train station is where a train stops.
A work station is where...

Maybe that explains why it is so hard getting
project 2 done © ouch

30

