
1

15-441 Computer Networking

Lecture 15 – Transport Protocols
Srini Seshan

Fall 2010
www.cs.cmu.edu/~prs/15-441-F10

Outline

T t i t d ti• Transport introduction

• Error recovery & flow control

2

Transport Protocols

• Lowest level end-to-
end protocolend protocol.
• Header generated by

sender is interpreted
only by the destination

• Routers view transport
header as part of the
payload

7

6

5

7

6

5

Transport

IP

Transport

IPIP

3

Datalink

Physical

Datalink

Physical

router

2 2

1 1

Functionality Split

• Network provides best-effort delivery
• End systems implement many functions• End-systems implement many functions

• Reliability
• In-order delivery
• Demultiplexing
• Message boundaries
• Connection abstraction

4

Connection abstraction
• Congestion control
• …

2

Transport Protocols

• UDP provides just integrity and demux
• TCP addsTCP adds…

• Connection-oriented
• Reliable
• Ordered
• Point-to-point
• Byte-stream

F ll d l

5

• Full duplex
• Flow and congestion controlled

UDP: User Datagram Protocol [RFC 768]

• “No frills,” “bare bones”
Internet transport Why is there a UDP?

N ti t bli h tprotocol
• “Best effort” service,

UDP segments may be:
• Lost
• Delivered out of order to

app

• No connection establishment
(which can add delay)

• Simple: no connection state
at sender, receiver

• Small header
• No congestion control: UDP

can blast away as fast as
desired

6

• Connectionless:
• No handshaking between

UDP sender, receiver
• Each UDP segment

handled independently of
others

UDP, cont.

• Often used for
streaming
multimedia apps Source port # Dest port #

32 bits

multimedia apps
• Loss tolerant
• Rate sensitive

• Other UDP uses
(why?):
• DNS, SNMP

• Reliable transfer

Source port # Dest port #

Application
data

Length Checksum
Length, in

bytes of UDP
segment,
including
header

7

• Reliable transfer
over UDP
• Must be at

application layer
• Application-specific

error recovery

(message)

UDP segment format

UDP Checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment – optional use!

Sender:
• Treat segment contents as

sequence of 16-bit integers
• Checksum: addition (1’s

complement sum) of segment
contents

Receiver:
• Compute checksum of

received segment
• Check if computed checksum

equals checksum field value:

segment – optional use!

8

contents
• Sender puts checksum value

into UDP checksum field
• NO - error detected
• YES - no error detected

But maybe errors
nonethless?

3

High-Level TCP Characteristics

• Protocol implemented entirely at the ends
• Fate sharing• Fate sharing

• Protocol has evolved over time and will continue
to do so

• Nearly impossible to change the header
• Use options to add information to the header

• These do change sometimes

9

g

• Change processing at endpoints
• Backward compatibility is what makes it TCP

TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RESET
PUSH
URG
ACK

10

Options (variable)

Data

Evolution of TCP

1984
Nagel’s algorithm
to reduce overhead 1987

K ’ l ith

1975
Three-way handshake

Raymond Tomlinson

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

of small packets;
predicts congestion

collapse

Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

Raymond Tomlinson
In SIGCOMM 75

11

1975 1980 1985 1990

TCP Through the 1990s

1994
T/TCP

(Braden)

1996
SACK TCP
(Fl d t l)

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
delay-based

congestion avoidance

(Braden)
Transaction

TCP

(Floyd et al)
Selective

Acknowledgement

1996
Hoe

NewReno startup
and loss recovery

1996
FACK TCP

(Mathis et al)
extension to SACK

12

1993 1994 1996

4

Outline

T t i t d ti• Transport introduction

• Error recovery & flow control

13

Stop and Wait

• ARQ
• Receiver sends

Ti
m

eo
ut

• Receiver sends
acknowledgement (ACK)
when it receives packet

• Sender waits for ACK and
timeouts if it does not
arrive within some time
period

Sender Receiver

14

Time

period
• Simplest ARQ protocol
• Send a packet, stop and

wait until ACK arrives

Recovering from Error

Ti
m

eo
ut

m
eo

ut

Ti
m

eo
ut

m
eo

ut

Time Ti
m

eo
ut

m
eo

ut

15

Ti
m

Ti
m

Ti
m

ACK lost Packet lost Early timeout
DUPLICATE
PACKETS!!!

• How to recognize a duplicate

Problems with Stop and Wait

• Performance
• Can only send one packet per round trip

16

5

How to Recognize Resends?

• Use sequence numbers
• both packets and acks• both packets and acks

• Sequence # in packet is finite
 How big should it be?
• For stop and wait?

• One bit – won’t send seq #1
until received ACK for seq #0

17

until received ACK for seq #0

How to Keep the Pipe Full?

• Send multiple packets without
waiting for first to be acked
• Number of pkts in flight = window

• Reliable, unordered delivery
• Several parallel stop & waits
• Send new packet after each ack
• Sender keeps list of unack’ed packets;

resends after timeout
• Receiver same as stop & wait

18

• How large a window is needed?
• Suppose 10Mbps link, 4ms delay,

500byte pkts
• 1? 10? 20?

• Round trip delay * bandwidth =
capacity of pipe

Sliding Window

• Reliable, ordered delivery
• Receiver has to hold onto a packet until all priorReceiver has to hold onto a packet until all prior

packets have arrived
• Why might this be difficult for just parallel stop & wait?
• Sender must prevent buffer overflow at receiver

• Circular buffer at sender and receiver
• Packets in transit  buffer size

19

• Advance when sender and receiver agree packets at
beginning have been received

ReceiverSender

Sender/Receiver State

… … … …

Max acceptable

Receiver window

Max ACK received Next seqnum

Sender window

Next expected

20

Sent & Acked Sent Not Acked

OK to Send Not Usable

Received & Acked Acceptable Packet

Not Usable

6

Sequence Numbers

• How large do sequence numbers need to be?
• Must be able to detect wrap-aroundp
• Depends on sender/receiver window size

• E.g.
• Max seq = 7, send win=recv win=7
• If pkts 0..6 are sent succesfully and all acks lost

• Receiver expects 7,0..5, sender retransmits old 0..6!!!

• Max sequence must be  send window + recv window

21

q

Window Sliding – Common Case

• On reception of new ACK (i.e. ACK for something that was
not acked earlier))
• Increase sequence of max ACK received
• Send next packet

• On reception of new in-order data packet (next expected)
• Hand packet to application
• Send cumulative ACK – acknowledges reception of all packets up

to sequence number

22

• Increase sequence of max acceptable packet

Loss Recovery

• On reception of out-of-order packet
• Send nothing (wait for source to timeout)Se d ot g (a t o sou ce to t eout)
• Cumulative ACK (helps source identify loss)

• Timeout (Go-Back-N recovery)
• Set timer upon transmission of packet
• Retransmit all unacknowledged packets

• Performance during loss recovery

23

• No longer have an entire window in transit
• Can have much more clever loss recovery

Go-Back-N in Action

24

7

Selective Repeat

• Receiver individually acknowledges all correctly
received pkts
• Buffers packets, as needed, for eventual in-order delivery

to upper layer

• Sender only resends packets for which ACK not
received
• Sender timer for each unACKed packet

• Sender window

25

• N consecutive seq #’s
• Again limits seq #s of sent, unACKed packets

Selective Repeat: Sender, Receiver
Windows

26

Important Lessons

• Transport service
• UDP mostly just IP service• UDP  mostly just IP service
• TCP  congestion controlled, reliable, byte stream

• Types of ARQ protocols
• Stop-and-wait  slow, simple
• Go-back-n  can keep link utilized (except w/ losses)
• Selective repeat efficient loss recovery

27

Selective repeat  efficient loss recovery
• Sliding window flow control

• Addresses buffering issues and keeps link utilized

Next Lecture

• Congestion control• Congestion control

• TCP Reliability

28

8

Ponder This…

• A bus station is where a bus stops• A bus station is where a bus stops.
• A train station is where a train stops.
• A work station is where…

• Maybe that explains why it is so hard getting

30

project 2 done …. ouch

