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Router Architecture

e Data Plane
— Moving the data, i.e., the packets
— How packets get forwarded
« Control Plane
— How routing protocols establish routes/etc.

Today’s Lecture: Data Plane

» The design of big, fast routers
» Partridge et al., A 50 Gb/s IP Router
 Design constraints
— Speed
— Size
— Power consumption
« Components
 Algorithms
— Lookups and packet processing (classification, etc.)
— Packet queuing
— Switch arbitration

Summary of Routing Functionality

» Router gets packet

» Looks at packet header for destination

» Looks up routing table for output interface
Modifies header Why?

» Passes packet to output interface
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Generic Router Architecture
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What’'s In A Router

 Interfaces
— Input/output of packets

» Switching fabric
— Moving packets from input to output

» Software
— Routing
— Packet processing
— Scheduling
— Etc.

First Generation Routers
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Typically <0.5Gb/s aggregate capacity
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What a Router Chassis Looks Like

Cisco CRS-1
19"

Juniper M320

Capacity: 1.2Th/s
Power: 10.4kW
Weight: 0.5 Ton

Capacity: 320 Gb/s
Cost: $500k

6t Power: 3.1kW
3ft

/ 2ft 2ft
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What a Router Line Card Looks Like

1-Port OC48 (2.5 Gb/s)
(for Juniper M40)

4-Port 10 GigE
(for Cisco CRS-1)

Power: about 150 Watts

Big, Fast Routers: Why Bother?

» Faster link bandwidths

* Increasing demands

» Larger network size (hosts, routers, users)
» More cost effective
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First Generation Routers
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Innovation #1: Each Line Card Has the
Routing Tables
» Prevents central table from becoming a
bottleneck at high speeds

e Complication: Must update forwarding tables
on the fly.
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Control Plane & Data Plane

» Control plane must remember lots of routing info
(BGP tables, etc.)

» Data plane only needs to know the “FIB”
(Forwarding Information Base)
— Smaller, less information, etc.
— Simplifies line cards vs the network processor

Generic Router Architecture
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Second Generation Routers
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Bus-based

* Some improvements possible

— Cache bits of forwarding table in line cards, send

directly over bus to outbound line card
» But shared bus was big bottleneck

— E.g., modern PCI bus (PCIx16) is only 32Gbit/sec (in

theory)

— Almost-modern cisco (XR 12416) is 320Gbit/sec.

— Ow! How do we get there?
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Innovation #2: Switched Backplane

¢ Every input port has a connection to every output port

« During each timeslot, each input connected to zero or
one outputs

* Advantage: Exploits parallelism
» Disadvantage: Need scheduling algorithm
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Third Generation Routers

“Crossbar”: Switched Backplane
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What’'s so hard here?

» Back-of-the-envelope numbers
— Line cards can be 40 Gbit/sec today (OC-768)
» Undoubtedly faster in a few more years, so scale these #s
appropriately!
— To handle minimum-sized packets (~40b)
* 125 Mpps, or 8ns per packet
» But note that this can be deeply pipelined, at the cost of
buffering and complexity. Some lookup chips do this, though
still with SRAM, not DRAM. Good lookup algos needed still.
» For every packet, you must:
— Do a routing lookup (where to send it)
— Schedule the crossbar

— Maybe buffer, maybe QoS, maybe filtering by ACLs

Crossbar Switching
» Conceptually: N inputs, N outputs
— Actually, inputs are also outputs

¢ In each timeslot, one-to-one mapping between
inputs and outputs.

* Crossbar constraint: Ifinput I is connected to output j, no
other input connected to j, no other output connected to input |

* Goal: Maximal matching

Bipartite Match
S (n) =argmax(L (n)- S(n)

Traffic Demands

Maximum
Weight Match
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Head-of-Line Blocking

Problem: The packet at the front of the queue experiences
contention for the output queue, blocking all packets behind it.

Inputl oE0| — m|Output 1
Input 2 | e O Output 2
Input 3 [ Output 3

Maximum throughput in such a switch: 2 — sqrt(2)

M.J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input Versus Output Queuing on
a Space-Division Packet Switch,” IEEE Transactions On Communications,
Vol. Com-35, No. 12, December 1987, pp. 1347-1356.
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Combined Input-Output Queuing

e Advantages

—Easy to build o _
_ Better throughput input interfaces output interfaces
C b
rossbar
. TN gy /AT
e Disadvantages . i .
° n .
—Harder to design algorithms . Il .
* Two congestion points  —[4O] E==]
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Solution: Virtual Output Queues

» Maintain N virtual queues at each input
— one per output

3
Inputl —
0 H| Output 1
— H output 2
Input2 —J
= O output 3
]
Input3 —J
—

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100%
Throughput in an Input-Queued Switch,” IEEE Transactions on
Communications, Vol. 47, No. 8, August 1999, pp. 1260-1267.
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Virtual Output Queues
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Quality of Service (Qo0S)

» Ensure that every network customer gets quality
service and their fair share of the network

» Might need to reorder packages
— Complicates router design
» More on this later...
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Why QoS?

* Internet currently provides one single class of
“best-effort” service
— No assurances about delivery

» Existing applications are elastic
— Tolerate delays and losses
— Can adapt to congestion

» Future “real-time” applications may be inelastic
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Router Components and Functions

* Route processor
— Routing
— Installing forwarding tables
— Management

e Line cards
— Packet processing and classification
— Packet forwarding

» Switched bus (“Crossbar”)
— Scheduling
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Processing: Fast Path vs. Slow Path

e Optimize for common case
— BBN router: 85 instructions for fast-path code
— Fits entirely in L1 cache

* Non-common cases handled on slow path
— Route cache misses
— Errors (e.g., ICMP time exceeded)
— IP options
— Fragmented packets
— Mullticast packets
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Recent Trends: Programmability

* NetFPGA: 4-port interface
card, plugs into PCI bus
(Stanford)

— Customizable forwarding
— Appearance of many

virtual interfaces (with
VLAN tags)

* Programmability with
Network processors
(Washington U.)

s

7 A
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IP Address Lookup Challenges

Challenges:
1. Longest-prefix match (not exact).
2. Tables are large and growing.
3. Lookups must be fast.
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IP Lookups find Longest Prefixes

128.9.176.0/24
128.9.16.0/21128.9.172.0/21

65.0.0.0/8 128.9.0.0/16 142.12.0.0/19

\ |
|
0 128.9.16.14 2321

Routing lookup: Find the longest matching prefix
(aka the most specific route) among all prefixes
that match the destination address.
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e (FlE

fctive BGP entri

Address Tables are Large
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Lookups Must be Fast

Year Line 40B Cisco CRS-1 1-Port OC-768C
packets (Line rate: 42.1 Gh/s)
(Mpkt/s)

1997 622Mb/s 1.94 0C-12

1999 2.5Gb/s 7.81 0C-48

2001 10Gb/s 31.25 0C-192

2003 40Gb/s 125 0C-768
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IP Address Lookup: Binary Tries

Example Prefixes:

a) 00001
b) 00010

c) 00011

d) 001

e) 0101

f) 011

g) 100

h) 1010

i) 1100

j) 11110000
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IP Address Lookup: Patricia Trie

Example Prefixes

a) 00001
b) 00010
c) 00011
d) 001
e) 0101
Skip 5 f oul

g) 100
1091y 1010
i) 1100
j) 11110000

abc

Problem: Lots of (slow) memory lookups
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LPM with PATRICIA Tries

 Traditional method — Patricia Tree

« Arrange route entries into a series of bit tests
» Worst case = 32 bit tests

* Problem: memory speed, even w/SRAM!

/@\Bit to test — 0 = left child,1 = right child

default

128.2/16
128.32I16

128.32.130/240 128.32.150/24
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Address Lookup: Direct Trie

24 bits 0000....0000 1111.....1111

— 1 0 eRTO s GOOOGQ e 2241

* When pipelined, one lookup per memory access
* Inefficient use of memory
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Faster LPM: Alternatives

» Content addressable memory (CAM)
— Hardware-based route lookup
— Input = tag, output = value

— Requires exact match with tag

« Multiple cycles (1 per prefix) with single CAM

« Multiple CAMs (1 per prefix) searched in parallel
— Ternary CAM

 (0,1,don’t care) values in tag match

* Priority (i.e., longest prefix) by order of entries

Historically, this approach has not been very economical.
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Faster Lookup: Alternatives

e Caching
— Packet trains exhibit temporal locality
— Many packets to same destination

» Cisco Express Forwarding
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IP Address Lookup: Summary

¢ Lookup limited by memory bandwidth.
« Lookup uses high-degree trie.

State of the art: 10Gb/s line rate.
* Scales to: 40Gb/s line rate.
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Fourth-Generation: Collapse the POP

High Reliability and Scalability enable “vertical”
POP simplification

%zﬁ'i

Reduces CapEx, Operational cost
Increases network stability
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Fourth-Generation Routers

s
' §

Limit today ~2.5Th/s
» Electronics
» Scheduler scales <2x every 18 months

Switch » Opto-electronic conversion —
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Multi-rack routers

Switch fabric

Linecard

WAN

WAN
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Router Design

« Many trade-offs: power, $$$, throughput,
reliability, flexibility
* Move towards distributed architectures
— Line-cards have forwarding tables
— Switched fabric between cards
— Separate Network processor for “slow path” & control
« Important bottlenecks on fast path
— Longest prefix match
— Cross-bar scheduling
» Beware: lots of feature creep
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