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IP Forwarding

• The Story So Far… 
• IP addresses are structured to reflect 

Internet structure
• IP packet headers carry these addresses
• When Packet Arrives at Router

• Examine header to determine intended 
destination

• Look up in table to determine next hop 
in path

Router
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in path
• Send packet out appropriate port

• This/next lecture
• How to generate the forwarding table

Graph Model

• Represent each router as node
• Direct link between routers represented by edge

S t i li k di t d h• Symmetric links  undirected graph
• Edge “cost” c(x,y) denotes measure of difficulty of using link

• delay, $ cost, or congestion level
• Task

• Determine least cost path from every node to every other node
• Path cost d(x,y) = sum of link costs
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Routes from Node A
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• Properties
• Some set of shortest paths forms tree

• Shortest path spanning tree
• Solution not unique

• E.g., A-E-F-C-D also has cost 7



2

Ways to Compute Shortest Paths

• Centralized
• Collect graph structure in one place

Use standard graph algorithm• Use standard graph algorithm
• Disseminate routing tables

• Link-state
• Every node collects complete graph structure
• Each computes shortest paths from it
• Each generates its own routing table
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• Distance-vector
• No one has copy of graph
• Nodes construct their own tables iteratively
• Each sends information about its table to neighbors

Outline

• Distance Vector• Distance Vector

• Link State

• Routing Hierarchy
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Distance-Vector Method
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• Idea
• At any time, have cost/next hop of best known path to destination
• Use cost  when no path known

• Initially
• Only have entries for directly connected nodes

Distance-Vector Update

z

c(x z)
d(z,y)

• Update(x,y,z)
d  c(x,z) + d(z,y) # Cost of path from x to y with first hop z

x
y

c(x,z)

d(x,y)
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( ) ( y)
if d < d(x,y)

# Found better path

return d,z # Updated cost / next hop

else

return d(x,y), nexthop(x,y) # Existing cost / next hop
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Algorithm

• Bellman-Ford algorithm
• Repeat• Repeat

For every node x
For every neighbor z

For every destination y
d(x,y)  Update(x,y,z)

• Until converge
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• Until converge

Start
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Table for A
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Iteration #1
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Dst Cst Hop
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Iteration #2
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Dst Cst Hop

A 6 F
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Distance Vector: Link Cost 
Changes
Link cost changes:
• Node detects local link cost change 

14 Y
1

• Updates distance table 
• If cost change in least cost path, notify 

neighbors

X Z
14

50

algorithm
terminates“good

news 

13

travels
fast”

Distance Vector: Link Cost 
Changes

Link cost changes:
• Good news travels fast 14 Y

60

• Bad news travels slow -
“count to infinity” problem!

X Z
14

50

algorithm
continues

on!
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Distance Vector: Split Horizon

If Z routes through Y to get to X :
• Z does not advertise its route to X back to Y 14 Y

60

algorithm
terminates

X Z
50

? ? ?
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Distance Vector: Poison Reverse

If Z routes through Y to get to X :
• Z tells Y its (Z’s) distance to X is infinite (so Y won’t 

t t X i Z)
14 Y

60

route to X via Z)
• Immediate notification of unreachability, rather than 

split horizon timeout waiting for advertisement
• Will this completely solve count to infinity problem? 

X Z
50

algorithm
terminates

16
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Poison Reverse Failures
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Table for F

Dst Cst Hop

C  –

Table for A

Dst Cst Hop

C  –

Forced
Update

Table for B

D t C t H
Forced

F C
6

1

1

1

B
D

A

4


Forced
Update

Table for A

Dst Cst Hop

C 13 D

Better
Route
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• Iterations don t converge
• “Count to infinity”
• Solution

• Make “infinity” smaller
• What is upper bound on 

maximum path length?

Dst Cst Hop

C 14 A
Update

Table for D

Dst Cst Hop

C 15 B

Table for A

Dst Cst Hop

C 19 D

Forced
Update

•
•
•

Forced
Update

Routing Information Protocol (RIP)

• Earliest IP routing protocol (1982 BSD)
• Current standard is version 2 (RFC 1723)Current standard is version 2 (RFC 1723)

• Features
• Every link has cost 1
• “Infinity” = 16

• Limits to networks where everything reachable within 
15 hops

Sending Updates
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• Sending Updates
• Every router listens for updates on UDP port 520
• RIP message can contain entries for up to 25 table 

entries

RIP Updates

• Initial
• When router first starts, asks for copy of table for every neighborpy y g
• Uses it to iteratively generate own table

• Periodic
• Every 30 seconds, router sends copy of its table to each neighbor
• Neighbors use it to iteratively update their tables

• Triggered
• When every entry changes, send copy of entry to neighbors
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When every entry changes, send copy of entry to neighbors
• Except for one causing update (split horizon rule)

• Neighbors use it to update their tables

RIP Staleness / Oscillation Control

• Small Infinity
• Count to infinity doesn’t take very long• Count to infinity doesn t take very long

• Route Timer
• Every route has timeout limit of 180 seconds

• Reached when haven’t received update from next 
hop for 6 periods

• If not updated, set to infinity
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p , y
• Soft-state refresh  important concept!

• Behavior
• When router or link fails, can take minutes to stabilize
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Outline

• Distance Vector• Distance Vector

• Link State

• Routing Hierarchy
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Link State Protocol Concept

• Every node gets complete copy of graph
• Every node “floods” network with data about its• Every node floods  network with data about its 

outgoing links
• Every node computes routes to every other node

• Using single-source, shortest-path algorithm
• Process performed whenever needed

• When connections die / reappear
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When connections die / reappear

Sending Link States by Flooding

• X Wants to Send 
I f ti

X A X A

Information
• Sends on all outgoing 

links
• When Node Y Receives 

Information from Z
• Send on all links other

C B D

(a)

C B D

(b)

X A

C B D

X A

C B D

23

• Send on all links other 
than Z

(c) (d)

Dijkstra’s Algorithm

• Given
• Graph with source node s and edge costs c(u v)• Graph with source node s and edge costs c(u,v)
• Determine least cost path from s to every node v

• Shortest Path First Algorithm
• Traverse graph in order of least cost from source

24
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Dijkstra’s Algorithm: Concept
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Node Sets
• Done

• Already have least cost path to it
• Horizon:

• Reachable in 1 hop from node in 
Done

• Unseen:
• Cannot reach directly from node in 

Done

• Label
• d(v) = path cost from s to v

• Path
• Keep track of last link in path

Dijkstra’s Algorithm: Initially
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• No nodes done
• Source in horizon

Dijkstra’s Algorithm: Initially
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• d(v) to node A shown in red
• Only consider links from done nodes 

Dijkstra’s Algorithm
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• Select node v in horizon with minimum d(v)
• Add link used to add node to shortest path tree
• Update d(v) information
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Dijkstra’s Algorithm
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• Repeat…

Dijkstra’s Algorithm
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• Update d(v) values
• Can cause addition of new nodes to horizon

Dijkstra’s Algorithm
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• Final tree shown in green

Link State Characteristics

• With consistent 
LSDBs* all nodesLSDBs , all nodes 
compute consistent 
loop-free paths

• Can still have 
transient loops

A

B

C

D

1

3

5 2

1

Packet from CA

32

may loop around BDC
if B knows about failure
and C & D do not

*Link State Data Base
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OSPF Routing Protocol

• Open
• Open standard created by IETF• Open standard created by IETF

• Shortest-path first
• Another name for Dijkstra’s algorithm

• More prevalent than RIP

33

OSPF Reliable Flooding

• Transmit link state advertisements
• Originating routerg g

• Typically, minimum IP address for router
• Link ID

• ID of router at other end of link
• Metric

• Cost of link
• Link-state age
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• Incremented each second
• Packet expires when reaches 3600

• Sequence number
• Incremented each time sending new link information

OSPF Flooding Operation

• Node X Receives LSA from Node Y
• With Sequence Number qq q
• Looks for entry with same origin/link ID

• Cases
• No entry present

• Add entry, propagate to all neighbors other than Y
• Entry present with sequence number p < q

• Update entry, propagate to all neighbors other than Y
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• Entry present with sequence number p > q
• Send entry back to Y
• To tell Y that it has out-of-date information

• Entry present with sequence number p = q
• Ignore it

Flooding Issues

• When should it be performed
• Periodicallye od ca y
• When status of link changes

• Detected by connected node
• What happens when router goes down & back up

• Sequence number reset to 0
• Other routers may have entries with higher sequence 

numbers
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numbers
• Router will send out LSAs with number 0
• Will get back LSAs with last valid sequence number p
• Router sets sequence number to p+1 & resends
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Adoption of OSPF

• RIP viewed as outmoded
• Good when networks small and routers had limited• Good when networks small and routers had limited 

memory & computational power
• OSPF Advantages

• Fast convergence when configuration changes
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Comparison of LS and DV 
Algorithms
Message complexity
• LS: with n nodes, E links, 

O( E)

Space requirements:
• LS maintains entire topology

O(nE) messages
• DV: exchange between 

neighbors only

Speed of Convergence
• LS: Relatively fast

• Complex computation, but can 
forward before computation

p gy
• DV maintains only neighbor 

state

Robustness: router 
malfunctions

• LS: Node can advertise 
incorrect link cost

E h d i
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• may have transient loops
• DV: convergence time varies

• may have routing loops
• count-to-infinity problem
• faster with triggered 

updates

• Each node computes its 
own table

• DV: Node can advertise 
incorrect path cost
• Each node’s table used by 

others (error propagates)

Outline

• Distance Vector• Distance Vector

• Link State

• Routing Hierarchy
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Routing Hierarchies

• Flat routing doesn’t scale
• Storage  Each node cannot be expected to store 

routes to every destination (or destination network)
• Convergence times increase
• Communication  Total message count increases

• Key observation
• Need less information with increasing distance to 

40

g
destination

• Need lower diameters networks
• Solution: area hierarchy
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Areas

• Divide network into areas
• Areas can have nested sub-areasAreas can have nested sub areas

• Hierarchically address nodes in a network
• Sequentially number top-level areas
• Sub-areas of area are labeled relative to that area
• Nodes are numbered relative to the smallest containing 

area
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Routing Hierarchy

Backbone AreasArea-Border
Router

• Partition Network into “Areas”
• Within area

Lower-level Areas
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• Each node has routes to every other node
• Outside area

• Each node has routes for other top-level areas only
• Inter-area packets are routed to nearest appropriate border router

• Constraint: no path between two sub-areas of an area can exit that 
area

Area Hierarchy Addressing

1 2
2 2

3

1.1

1.2

2.1 2.2

2.2.1

2.2.2

1.2.1

1.2.2
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3.1 3.2

Path Sub-optimality

• Can result in sub-optimal paths

1 2

1.1
1.2

2.1 2.2

2.2.1

start
end

1.2.1
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3

3.1 3.2
3 hop red path
vs.
2 hop green path

3.2.1


