
1

15-441 Computer Networking

Lecture 10: Intra-Domain Routing
Peter Steenkiste

Fall 2010
www.cs.cmu.edu/~prs/15-441-F10

IP Forwarding

• The Story So Far…
• IP addresses are structured to reflect

Internet structure
• IP packet headers carry these addresses
• When Packet Arrives at Router

• Examine header to determine intended
destination

• Look up in table to determine next hop
in path

Router

2

in path
• Send packet out appropriate port

• This/next lecture
• How to generate the forwarding table

Graph Model

• Represent each router as node
• Direct link between routers represented by edge

S t i li k di t d h• Symmetric links  undirected graph
• Edge “cost” c(x,y) denotes measure of difficulty of using link

• delay, $ cost, or congestion level
• Task

• Determine least cost path from every node to every other node
• Path cost d(x,y) = sum of link costs

E C3

3

A

F

D

B

2

3

6

4

1

1

1

3

Routes from Node A

E C3 1
Forwarding Table for A
Dest Cost Next

H

A

F

D

B

2
6

4

1

1

3

Hop
A 0 A
B 4 B
C 6 E
D 7 B
E 2 E
F 5 E

4

• Properties
• Some set of shortest paths forms tree

• Shortest path spanning tree
• Solution not unique

• E.g., A-E-F-C-D also has cost 7

2

Ways to Compute Shortest Paths

• Centralized
• Collect graph structure in one place

Use standard graph algorithm• Use standard graph algorithm
• Disseminate routing tables

• Link-state
• Every node collects complete graph structure
• Each computes shortest paths from it
• Each generates its own routing table

5

• Distance-vector
• No one has copy of graph
• Nodes construct their own tables iteratively
• Each sends information about its table to neighbors

Outline

• Distance Vector• Distance Vector

• Link State

• Routing Hierarchy

6

Distance-Vector Method

E C3 1

Initial Table for A
Dest Cost Next

Hop

Id

A

F

D

B

2
6

4

1

1

3

p
A 0 A
B 4 B
C  –
D  –
E 2 E
F 6 F

7

• Idea
• At any time, have cost/next hop of best known path to destination
• Use cost  when no path known

• Initially
• Only have entries for directly connected nodes

Distance-Vector Update

z

c(x z)
d(z,y)

• Update(x,y,z)
d  c(x,z) + d(z,y) # Cost of path from x to y with first hop z

x
y

c(x,z)

d(x,y)

8

() (y)
if d < d(x,y)

Found better path

return d,z # Updated cost / next hop

else

return d(x,y), nexthop(x,y) # Existing cost / next hop

3

Algorithm

• Bellman-Ford algorithm
• Repeat• Repeat

For every node x
For every neighbor z

For every destination y
d(x,y)  Update(x,y,z)

• Until converge

9

• Until converge

Start

E C3 1

Table for A

Dst Cst Hop

Table for B

Dst Cst Hop

Optimum 1-hop paths

A

F

D

B

2
6

4

1

1

3

A 0 A

B 4 B

C  –

D  –

E 2 E

F 6 F

A 4 A

B 0 B

C  –

D 3 D

E  –

F 1 F

Table for C

Dst Cst Hop

Table for D

Dst Cst Hop

Table for E

Dst Cst Hop

Table for F

Dst Cst Hop

2/11/2010 Lecture 10: Intra-Domain Routing 10

Dst Cst Hop

A  –

B  –

C 0 C

D 1 D

E  –

F 1 F

Dst Cst Hop

A  –

B 3 B

C 1 C

D 0 D

E  –

F  –

Dst Cst Hop

A 2 A

B  –

C  –

D  –

E 0 E

F 3 F

Dst Cst Hop

A 6 A

B 1 B

C 1 C

D  –

E 3 E

F 0 F

Iteration #1

Table for A

Dst Cst Hop

Table for B

Dst Cst Hop

Optimum 2-hop paths

E C3 1
A 0 A

B 4 B

C 7 F

D 7 B

E 2 E

F 5 E

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F
Table for C

Dst Cst Hop

Table for D

Dst Cst Hop

Table for E

Dst Cst Hop

Table for F

Dst Cst Hop

A

F

D

B

2
6

4

1

1

3

11

Dst Cst Hop

A 7 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E  –

F 2 C

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D  –

E 0 E

F 3 F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Iteration #2

Table for A

Dst Cst Hop

Table for B

Dst Cst Hop

Optimum 3-hop paths

E C3 1
A 0 A

B 4 B

C 6 E

D 7 B

E 2 E

F 5 E

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F
Table for C

Dst Cst Hop

Table for D

Dst Cst Hop

Table for E

Dst Cst Hop

Table for F

Dst Cst Hop

A

F

D

B

2
6

4

1

1

3

12

Dst Cst Hop

A 6 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E 5 C

F 2 C

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D 5 F

E 0 E

F 3 F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

4

Distance Vector: Link Cost
Changes
Link cost changes:
• Node detects local link cost change

14 Y
1

• Updates distance table
• If cost change in least cost path, notify

neighbors

X Z
14

50

algorithm
terminates“good

news

13

travels
fast”

Distance Vector: Link Cost
Changes

Link cost changes:
• Good news travels fast 14 Y

60

• Bad news travels slow -
“count to infinity” problem!

X Z
14

50

algorithm
continues

on!

14

Distance Vector: Split Horizon

If Z routes through Y to get to X :
• Z does not advertise its route to X back to Y 14 Y

60

algorithm
terminates

X Z
50

? ? ?

15

Distance Vector: Poison Reverse

If Z routes through Y to get to X :
• Z tells Y its (Z’s) distance to X is infinite (so Y won’t

t t X i Z)
14 Y

60

route to X via Z)
• Immediate notification of unreachability, rather than

split horizon timeout waiting for advertisement
• Will this completely solve count to infinity problem?

X Z
50

algorithm
terminates

16

5

Poison Reverse Failures

Table for A

Dst Cst Hop

C 7 F

Table for B

Dst Cst Hop

C 8 A

Table for F

Dst Cst Hop

C 1 C

Table for D

Dst Cst Hop

C 9 B

• Iterations don’t converge

Table for F

Dst Cst Hop

C  –

Table for A

Dst Cst Hop

C  –

Forced
Update

Table for B

D t C t H
Forced

F C
6

1

1

1

B
D

A

4


Forced
Update

Table for A

Dst Cst Hop

C 13 D

Better
Route

17

• Iterations don t converge
• “Count to infinity”
• Solution

• Make “infinity” smaller
• What is upper bound on

maximum path length?

Dst Cst Hop

C 14 A
Update

Table for D

Dst Cst Hop

C 15 B

Table for A

Dst Cst Hop

C 19 D

Forced
Update

•
•
•

Forced
Update

Routing Information Protocol (RIP)

• Earliest IP routing protocol (1982 BSD)
• Current standard is version 2 (RFC 1723)Current standard is version 2 (RFC 1723)

• Features
• Every link has cost 1
• “Infinity” = 16

• Limits to networks where everything reachable within
15 hops

Sending Updates

18

• Sending Updates
• Every router listens for updates on UDP port 520
• RIP message can contain entries for up to 25 table

entries

RIP Updates

• Initial
• When router first starts, asks for copy of table for every neighborpy y g
• Uses it to iteratively generate own table

• Periodic
• Every 30 seconds, router sends copy of its table to each neighbor
• Neighbors use it to iteratively update their tables

• Triggered
• When every entry changes, send copy of entry to neighbors

19

When every entry changes, send copy of entry to neighbors
• Except for one causing update (split horizon rule)

• Neighbors use it to update their tables

RIP Staleness / Oscillation Control

• Small Infinity
• Count to infinity doesn’t take very long• Count to infinity doesn t take very long

• Route Timer
• Every route has timeout limit of 180 seconds

• Reached when haven’t received update from next
hop for 6 periods

• If not updated, set to infinity

20

p , y
• Soft-state refresh  important concept!

• Behavior
• When router or link fails, can take minutes to stabilize

6

Outline

• Distance Vector• Distance Vector

• Link State

• Routing Hierarchy

21

Link State Protocol Concept

• Every node gets complete copy of graph
• Every node “floods” network with data about its• Every node floods network with data about its

outgoing links
• Every node computes routes to every other node

• Using single-source, shortest-path algorithm
• Process performed whenever needed

• When connections die / reappear

22

When connections die / reappear

Sending Link States by Flooding

• X Wants to Send
I f ti

X A X A

Information
• Sends on all outgoing

links
• When Node Y Receives

Information from Z
• Send on all links other

C B D

(a)

C B D

(b)

X A

C B D

X A

C B D

23

• Send on all links other
than Z

(c) (d)

Dijkstra’s Algorithm

• Given
• Graph with source node s and edge costs c(u v)• Graph with source node s and edge costs c(u,v)
• Determine least cost path from s to every node v

• Shortest Path First Algorithm
• Traverse graph in order of least cost from source

24

7

Dijkstra’s Algorithm: Concept

E C3 1
2

5


Current Path Costs

• Node Sets

A

F

D

B

2
6

3

1

2

3
Source

Node

Done

Horizon
Unseen

0
3



Current Path Costs

25

Node Sets
• Done

• Already have least cost path to it
• Horizon:

• Reachable in 1 hop from node in
Done

• Unseen:
• Cannot reach directly from node in

Done

• Label
• d(v) = path cost from s to v

• Path
• Keep track of last link in path

Dijkstra’s Algorithm: Initially

E C3 1

2






Current Path Costs

A

F

D

B

2
6

3

1

2

3
Source

Node

Done
Horizon

Unseen

0




26

• No nodes done
• Source in horizon

Dijkstra’s Algorithm: Initially

E C3 1

2

2
6



Current Path Costs

A

F

D

B

2
6

3

1

2

3
Source

Node

Done
Horizon Unseen

0
3



27

• d(v) to node A shown in red
• Only consider links from done nodes

Dijkstra’s Algorithm

E C3 1
2


65

A

F

D

B

2
6

3

1

2

3
Source

Node

Done

Horizon
Unseen

0
3



Current Path Costs

28

• Select node v in horizon with minimum d(v)
• Add link used to add node to shortest path tree
• Update d(v) information

8

Dijkstra’s Algorithm

C3 1
Horizon

2
5

E

A

2
6

3

1

2

3
Source

Node

Done
Unseen

0

5

3


Current Path Costs
F

B

D

29

• Repeat…

Dijkstra’s Algorithm

1

Unseen
2

4


Current Path Costs

C3E

2
6

3

1

2

3
Source

Node

Done
Horizon

0
3

6

Current Path Costs

A
D

B

F

30

• Update d(v) values
• Can cause addition of new nodes to horizon

Dijkstra’s Algorithm

1
2

4
5C3E

2
6

3

1

2

3
Source

Node
0

3
6

A
D

B

F

31

• Final tree shown in green

Link State Characteristics

• With consistent
LSDBs* all nodesLSDBs , all nodes
compute consistent
loop-free paths

• Can still have
transient loops

A

B

C

D

1

3

5 2

1

Packet from CA

32

may loop around BDC
if B knows about failure
and C & D do not

*Link State Data Base

9

OSPF Routing Protocol

• Open
• Open standard created by IETF• Open standard created by IETF

• Shortest-path first
• Another name for Dijkstra’s algorithm

• More prevalent than RIP

33

OSPF Reliable Flooding

• Transmit link state advertisements
• Originating routerg g

• Typically, minimum IP address for router
• Link ID

• ID of router at other end of link
• Metric

• Cost of link
• Link-state age

34

• Incremented each second
• Packet expires when reaches 3600

• Sequence number
• Incremented each time sending new link information

OSPF Flooding Operation

• Node X Receives LSA from Node Y
• With Sequence Number qq q
• Looks for entry with same origin/link ID

• Cases
• No entry present

• Add entry, propagate to all neighbors other than Y
• Entry present with sequence number p < q

• Update entry, propagate to all neighbors other than Y

35

• Entry present with sequence number p > q
• Send entry back to Y
• To tell Y that it has out-of-date information

• Entry present with sequence number p = q
• Ignore it

Flooding Issues

• When should it be performed
• Periodicallye od ca y
• When status of link changes

• Detected by connected node
• What happens when router goes down & back up

• Sequence number reset to 0
• Other routers may have entries with higher sequence

numbers

36

numbers
• Router will send out LSAs with number 0
• Will get back LSAs with last valid sequence number p
• Router sets sequence number to p+1 & resends

10

Adoption of OSPF

• RIP viewed as outmoded
• Good when networks small and routers had limited• Good when networks small and routers had limited

memory & computational power
• OSPF Advantages

• Fast convergence when configuration changes

37

Comparison of LS and DV
Algorithms
Message complexity
• LS: with n nodes, E links,

O(E)

Space requirements:
• LS maintains entire topology

O(nE) messages
• DV: exchange between

neighbors only

Speed of Convergence
• LS: Relatively fast

• Complex computation, but can
forward before computation

p gy
• DV maintains only neighbor

state

Robustness: router
malfunctions

• LS: Node can advertise
incorrect link cost

E h d i

38

• may have transient loops
• DV: convergence time varies

• may have routing loops
• count-to-infinity problem
• faster with triggered

updates

• Each node computes its
own table

• DV: Node can advertise
incorrect path cost
• Each node’s table used by

others (error propagates)

Outline

• Distance Vector• Distance Vector

• Link State

• Routing Hierarchy

39

Routing Hierarchies

• Flat routing doesn’t scale
• Storage  Each node cannot be expected to store

routes to every destination (or destination network)
• Convergence times increase
• Communication  Total message count increases

• Key observation
• Need less information with increasing distance to

40

g
destination

• Need lower diameters networks
• Solution: area hierarchy

11

Areas

• Divide network into areas
• Areas can have nested sub-areasAreas can have nested sub areas

• Hierarchically address nodes in a network
• Sequentially number top-level areas
• Sub-areas of area are labeled relative to that area
• Nodes are numbered relative to the smallest containing

area

41

Routing Hierarchy

Backbone AreasArea-Border
Router

• Partition Network into “Areas”
• Within area

Lower-level Areas

42

• Each node has routes to every other node
• Outside area

• Each node has routes for other top-level areas only
• Inter-area packets are routed to nearest appropriate border router

• Constraint: no path between two sub-areas of an area can exit that
area

Area Hierarchy Addressing

1 2
2 2

3

1.1

1.2

2.1 2.2

2.2.1

2.2.2

1.2.1

1.2.2

43

3.1 3.2

Path Sub-optimality

• Can result in sub-optimal paths

1 2

1.1
1.2

2.1 2.2

2.2.1

start
end

1.2.1

44

3

3.1 3.2
3 hop red path
vs.
2 hop green path

3.2.1

